Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Embeddability of some strongly pseudoconvex CR manifolds

Authors: George Marinescu and Nader Yeganefar
Journal: Trans. Amer. Math. Soc. 359 (2007), 4757-4771
MSC (2000): Primary 32V30, 32V15, 32Q05
Published electronically: April 24, 2007
MathSciNet review: 2320650
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain an embedding theorem for compact strongly pseudoconvex CR manifolds which are boundaries of some complete Hermitian manifolds. We use this to compactify some negatively curved Kähler manifolds with compact strongly pseudoconvex boundary. An embedding theorem for Sasakian manifolds is also derived.

References [Enhancements On Off] (What's this?)

  • [And63] A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963), 1-38.MR 0152674 (27:2649)
  • [Ang93] N. Anghel, An abstract index theorem on noncompact Riemannian manifolds, Houston J. Math. 19 (1993), no. 2, 223-237. MR 1225459 (94c:58193)
  • [AS70] A. Andreotti and Y.-T. Siu, Projective embedding of pseudoconcave spaces, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 231-278.MR 0265633 (42:542)
  • [AT70] A. Andreotti and G. Tomassini, Some remarks on pseudoconcave manifolds, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 85-104. MR 0265632 (42:541)
  • [BGS85] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985.MR 0823981 (87h:53050)
  • [Bel01] F. Belgun, Normal CR structures on compact 3-manifolds, Math. Z. 238 (2001), no. 3, 441-460. MR 1869692 (2002k:32065)
  • [BH02] O. Biquard and M. Herzlich, A Burns-Epstein invariant for ACHE $ 4-$manifolds, Duke Math. J. 126 (2005), no. 1, 53-100. MR 2110628 (2006g:32034)
  • [BE96] J. Bland and C. L. Epstein, Embeddable CR-structures and deformations of pseudoconvex surfaces. I. Formal deformations, J. Algebraic Geom. 5 (1996), no. 2, 277-368.MR 1374711 (97c:32021)
  • [BdM75] L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974-1975; Équations aux derivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, pp. Exp. No. 9, 14. MR 0409893 (53:13645)
  • [BE90] D. M. Burns and C. L. Epstein, Embeddability for three-dimensional CR-manifolds, J. Amer. Math. Soc. 3 (1990), no. 4, 809-841. MR 1071115 (93b:32024)
  • [Bur79] D. M. Burns, Global behavior of some tangential Cauchy-Riemann equations, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977), Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 51-56.MR 0535588 (81d:32032)
  • [Cat] D. Catlin, A Newlander-Nirenberg theorem for manifolds with boundary, Michigan Math. J., 35 (1988), no. 2, 233-240. MR 0959270 (89j:32026)
  • [Dem01] J.-P. Demailly, Complex analytic and differential geometry, published online at, 2001.
  • [Ebe80] P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. (2) 111 (1980), no. 3, 435-476.MR 0577132 (82m:53040)
  • [EO73] P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-109.MR 0336648 (49:1421)
  • [EH00] C. L. Epstein and G. M. Henkin, Stability of embeddings for pseudoconcave surfaces and their boundaries, Acta Math. 185 (2000), no. 2, 161-237.MR 1819994 (2002e:32048)
  • [Fal92] E. Falbel, Nonembeddable CR-manifolds and surface singularities, Invent. Math. 108 (1992), no. 1, 49-65.MR 1156386 (93j:32016)
  • [Gei97] H. Geiges, Normal contact structures on $ 3$-manifolds, Tohoku Math. J. (2) 49 (1997), no. 3, 415-422.MR 1464186 (98h:53046)
  • [Gra62] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368.MR 0137127 (25:583)
  • [GW79] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR 0521983 (81a:53002)
  • [Gro91] M. Gromov, Kähler hyperbolicity and $ L\sb 2$-Hodge theory, J. Differential Geom. 33 (1991), no. 1, 263-292. MR 1085144 (92a:58133)
  • [HL75] F. R. Harvey and H. Blaine Lawson, Jr., On boundaries of complex analytic varieties. I, Ann. of Math. (2) 102 (1975), no. 2, 223-290. MR 0425173 (54:13130)
  • [HIH77] E. Heintze and H.-C. Im Hof, Geometry of horospheres, J. Differential Geom. 12 (1977), no. 4, 481-491 (1978).MR 0512919 (80a:53051)
  • [Heu86] D. Heunemann, Extension of the complex structure from Stein manifolds with strictly pseudoconvex boundary, Math. Nachr. 128 (1986), 57-64.MR 0855943 (87j:32057)
  • [KR65] J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451-472.MR 0177135 (31:1399)
  • [Lem95] L. Lempert, Algebraic approximations in analytic geometry, Invent. Math. 121 (1995), no. 2, 335-353.MR 1346210 (97k:32021)
  • [MD06] G. Marinescu and T-C. Dinh, On the compactification of hyperconcave ends and the theorems of Siu-Yau and Nadel, Invent. Math. 164 (2006), no. 2, 233-248. MR 2218480 (2007b:32033b)
  • [NT88] A. Nadel and H. Tsuji, Compactification of complete Kähler manifolds of negative Ricci curvature, J. Differential Geom. 28 (1988), no. 3, 503-512.MR 0965227 (89m:32047)
  • [NR98] T. Napier and M. Ramachandran, The $ L\sp 2 \overline \partial$-method, weak Lefschetz theorems, and the topology of Kähler manifolds, J. Amer. Math. Soc. 11 (1998), no. 2, 375-396.MR 1477601 (99a:32008)
  • [Nar60] R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917-934.MR 0148942 (26:6438)
  • [Ohs84] T. Ohsawa, Holomorphic embedding of compact s.p.c. manifolds into complex manifolds as real hypersurfaces, Differential geometry of submanifolds (Kyoto, 1984), Lecture Notes in Math., vol. 1090, Springer, Berlin, 1984, pp. 64-76.MR 0775145 (86j:32047)
  • [Ros65] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, pp. 242-256.MR 0176106 (31:381)
  • [SY82] Y. T. Siu and S. T. Yau, Compactification of negatively curved complete Kähler manifolds of finite volume, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 363-380.MR 0645748 (83g:32027)
  • [Tan75] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co. Ltd., Tokyo, 1975, Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. MR 0399517 (53:3361)
  • [Ura93] H. Urakawa, Variational problems over strongly pseudoconvex CR manifolds, Differential geometry (Shanghai, 1991), World Sci. Publishing, River Edge, NJ, 1993, pp. 233-242.MR 1341616 (96h:58048)
  • [Web78] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), no. 1, 25-41. MR 0520599 (80e:32015)
  • [Yeg04] N. Yeganefar, $ L^2$-cohomology of negatively curved Kähler manifolds of finite volume, to appear in Geom. and Funct. Analysis, arXiv:math.DG/0402056, 2004.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32V30, 32V15, 32Q05

Retrieve articles in all journals with MSC (2000): 32V30, 32V15, 32Q05

Additional Information

George Marinescu
Affiliation: Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
Address at time of publication: Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D50931 Köln, Germany

Nader Yeganefar
Affiliation: Département de Mathématiques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes cedex 03, France
Address at time of publication: CMI, Université de Provence, 39 Rue Frédéric Joliot Curie, 13453 Marseille cedex 13, France

Received by editor(s): January 10, 2005
Received by editor(s) in revised form: April 18, 2005
Published electronically: April 24, 2007
Additional Notes: The second-named author was (partially) supported by the European Commission through the Research Training Network HPRN-CT-1999-00118 “Geometric Analysis”.
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society