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MIXED MULTIPLICITIES OF IDEALS
VERSUS MIXED VOLUMES OF POLYTOPES

NGO VIET TRUNG AND JUGAL VERMA

ABSTRACT. The main results of this paper interpret mixed volumes of lattice
polytopes as mixed multiplicities of ideals and mixed multiplicities of ideals
as Samuel’s multiplicities. In particular, we can give a purely algebraic proof
of Bernstein’s theorem which asserts that the number of common zeros of a
system of Laurent polynomial equations in the torus is bounded above by the
mixed volume of their Newton polytopes.

INTRODUCTION

Let us first recall the definition of mixed volumes. Given two polytopes P, Q) in
R™ (which need not be different), their Minkowski sum is defined as the polytope

P+Q:={a+b|] a€e P, beQ}.

The n-dimensional mized volume of a collection of n polytopes @1, ..., Q, in R™ is
the value

MVo(Q1,o i Qu) = Y (—1)""Va(@iy + -+ Qi)
h=11<i1<...<ip<n

Here V,, denotes the n-dimensional Euclidean volume. Mixed volumes play an
important role in convex geometry (see [BF], [Ew]) and elimination theory (see
[GKZ], [CLO], [Stul).

Our interest in mixed volumes arises from the following result of Bernstein [Be]
which relates the number of solutions of a system of polynomial equations to the
mixed volume of their Newton polytopes (see also [Kh], [Kul).

Bernstein’s Theorem. Let fi,..., f,, be Laurent polynomials in (C[:Elil, eyl

with finitely many common zeros in the torus (C*)™. Then the number of common
zeros of fi,..., fn i (C*)™ is bounded above by the mized volume MV, (Q1, ..., Qn),
where Q; denotes the Newton polytope of f;. Moreover, this bound is attained for a
generic choice of coefficients in fi, ..., fn.

Bernstein’s theorem is a generalization of the classical Bezout’s theorem. It is a
beautiful example of the interaction between algebra and combinatorics. However,
the original proof in [Be] has more or less a combinatorial flavor. A geometric
proof using intersection theory was given by Teissier [Te3| (see also the expositions
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[Fu2], [GKZ]). This paper grew out of our attempt to find an algebraic proof of
Bernstein’s theorem by using Samuel’s multiplicity as it is usually done in a proof of
Bezout’s theorem. The relationship between toric varieties and multigraded rings
used in the geometric proof suggests that mixed multiplicities of ideals may be the
link between mixed volume of Newton polytopes of Laurent polynomials and the
number of their common zeros. To produce this link we encountered two problems
which are of independent interest:

e Can one interpret the number of common zeros of Laurent polynomials in
the torus as mixed multiplicity of ideals?

e Does there exist any relationship between mixed multiplicities of ideals and
mixed volume of polytopes?

We will solve these problems and we will thereby obtain a proof for Bernstein’s
theorem which uses mixed multiplicities of ideals in a similar way as Samuel’s
multiplicity for Bezout’s theorem. In fact, the number of common zeros of general
polynomials in the torus counted with multiplicities and the mixed volume of their
Newton polytopes can be interpreted as the same mixed multiplicity of ideals.

Now we are going to give a brief introduction of mixed multiplicities. Let
J1, ...y Jn, be a collection of ideals in a local ring (4, m) and I an m-primary ideal.
Then the length function

I T o T [T T )

is a polynomial P(u) for ug,us, ..., u, large enough [Ba], [R2], [Tel]. If we write
this polynomial in the form

1
P(u) = Z aeau“ + {terms of total degree < r},

aeNnt1 |a|=r

where r = deg P(u) and « = (g, a1, ..., ) of weight

ol =ap+o1+ - Fay, =7, al:=alal. eyl u® i=ug’uit. unn,
then the coefficients e, are non-negative integers. One calls e, the mized multiplic-
ities of the ideals I, Jy,...,J, [Tel]. We will denote e, by en(I|J1,..., Jn). This
notion can also be defined for homogeneous ideals in a standard multi-graded alge-
bra over a field. Applications of mixed multiplicities can be found in [KaV], [Rol,
[Tell, [Te2], [Tr2], [Vel] and [Ve2].

If the ideals Ji, ..., J,, are m-primary ideals, one can interpret e, (I|Jy, ..., J,) as
Samuel’s multiplicity of general elements ([Tel], [R2], [Sw]). However, the tech-
niques used in the m-primary case are not applicable for non-m-primary ideals. For
instance, mixed multiplicities of m-primary ideals are always positive, whereas they
may be zero in the general case. We will develop new techniques to prove the fol-
lowing general result which allows us to test the positivity of mixed multiplicities
and to compute them by means of Samuel’s multiplicity.

Corollary 1.6. Assume that the local ring A has an infinite residue field. Let Q) be
an ideal generated by «; general elements in J;, fori=1,...n, and J := Jy---Jp.
Then eq(I|J1, ..., Jn) > 0 if and only if dim A/(Q : J*°) = ap + 1. In this case,

ealI| Ty, Jy) = e(I, A)(Q : J®)).
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More generally, we can specify a class of concrete ideals @) that can be used to
compute ey (I|J1, ..., Jn) (Theorem [[4). Such a result was already obtained for
two ideals in [Tr2]. The novelties here are the use of diagonal subalgebras and the
introduction of superficial sequences for a set of ideals which provide a simpler way
to study mixed multiplicities. As consequences, we will show that the positivity of
ea(I|J1, ..., Jn) does not depend on the ideal I and is rigid with respect to a certain
order of the indices o (Corollary [[8).

There is already a close relationship between mixed multiplicities of multigraded
rings and mixed volumes. First, the multiplicity of a graded toric ring can be ex-
pressed in terms of the volume of a convex polytope (which is a consequence of
Ehrhart’s theory on the number of lattice points in convex polytopes). Second,
mixed volume can be defined as a coefficient of the multivariate polynomial repre-
senting the volumes of linear combinations of the polytopes (Minkowski formula).
Using these facts we find the following interpretation of mixed volumes as mixed
multiplicities of ideals.

Corollary 2.5. Let 1, ..., Q. be an arbitrary collection of lattice convex polytopes
in R". Let A = k[xg, 1, ..., 2,] and m be the mazimal graded ideal of A. Let M;
be any set of monomials of the same degree in A such that Q; is the convezr hull of
the lattice points of their dehomogenized monomials in k[xy,...,x,]. Let J; be the
ideal of A generated by the monomials of M;. Then

MVn(Ql, ceey Qn) = 6(0,17_“71) (m|J1, ceey Jn)

This interpretation has interesting consequences. For instance, one can deduce
properties of mixed volumes from those of mixed multiplicities. Conversely, prop-
erties of mixed volumes may predict unknown properties of mixed multiplicities.
For instance, well-known inequalities for mixed volumes such as the Alexandroff-
Fenchel inequality (see e.g. [Kh], [Te3]) lead us to raise the question whether similar
inequalities are valid for mixed multiplicities of ideals (Question [Z7T]). To give an
answer to this question turns out to be a challenging problem.

To prove Bernstein’s theorem we first reformulate it for a system of homogeneous
polynomial equations. In this case, the number of common zeros of general poly-
nomials fi,..., f, can be seen as Samuel’s multiplicity of certain graded algebra.
It turn out that this Samuel’s multiplicity and the mixed volume of their Newton
polytopes are the same mixed multiplicity e, 1)(m|J1, ..., Jn), where Ji,...,J,
are the ideals generated by the supporting monomials of fi,..., f,. By the prin-
ciple of conservation of number, this implies the bound in Bernstein’s theorem for
any algebraically closed field (Theorem B.T]).

Finally, we would like to point out that computing mixed volumes is a hard
enumerative problem (see e.g. [EC], [HS1], [HS2]) and that the above relationships
between mixed volumes, mixed multiplicities and Samuel multiplicity provide an
alternative method for the computation of mixed volumes since many computer
algebra programs can compute the Samuel multiplicity or the Hilbert polynomial
of multigraded algebras.

This paper is organized as follows. Section 1 will deal with the characterization
of mixed multiplicities as Samuel’s multiplicities. In Section 2 we will interpret
mixed volumes as mixed multiplicities. The algebraic proof of Bernstein’s theorem
will be given in Section 3.
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1. MIXED MULTIPLICITIES OF IDEALS

We begin with some general observations on Hilbert polynomials of multigraded
algebras.

Let s be any non-negative integer. Let R = @, y.+1 Ry be a finitely generated
standard N**!1-graded algebra over an Artin local ring Ry. We say R is standard if
it is generated by homogeneous elements of degrees (0,...,1,...,0), where 1 occurs
only as the ith component, i = 0,1, ...,s. The Hilbert function of R is defined by
Hp(u) := £(R,), where ¢ denotes the length. If we view u as a set of s+ 1 variables
Ug, ..., Us, then there exists a polynomial Pr(u) and integers ng, nq, ..., ns such that
Hp(u) = Pg(u) for u; > n;, i =0,1,...,s (abbr. for u > 0) [Wa]. One calls Pgr(u)
the Hilbert polynomial of R. If Pr(u) # 0, we write Pr(u) in the form

1
Pr(u) = Z aea(R)ua + {terms of degree < r},

aeNstHL |a|=r
where r = deg Pr(u) and a = (g, a, ..., @s) with

s
P

ol :=ap+a1+--F+as =1, a:=alal.al, and u® :=ug’u...u
One calls the coefficients e, (R) the mized multiplicities of the multigraded algebra
R. If s =0, i.e. R is an N-graded algebra, then R has only one mixed multiplicity.
It is the usual multiplicity of R, and we will denote it by e(R).

The mixed multiplicities of R can be studied by means of certain N-graded

subalgebras. Let A = (Ag, A1, ..., As) be any sequence of non-negative integers. Set
R)\ = @ Rn)\.
n>0

Then R” is a finitely generated N-graded algebra over Ry. One calls R the M-
diagonal subalgebra of R. This notion plays an important role in the study of
embeddings of blowups of projective schemes [CHTV].

Lemma 1.1. Let r = deg Pr(u) > 0 and let all components of A be positive. Then
dim R* = r + 1 and

(B =r Y %ea(R))\a.

aeNstL | |a|=r

Proof. Since all components of A\ are positive, we have

1
Prxa(n) = Hrx(n) = Hr(n\) = Z —ea(R)A"n"+{terms of degree <r}
aeNstL |o|=r o
for n > 0. This implies the conclusion because dim R* = deg Pgx(n) + 1. ]
Let (A, m) be a local ring (or a standard graded algebra over a field, where m is
the maximal graded ideal). Let I be an m-primary ideal and Ji, ..., Js a sequence
of ideals of A. One can define the N**!-graded algebra
Ry, ..., Js) = &y TUo gt Jus JTuotL Jur Jus,

(uo,u1,...,us)ENsHL

This algebra can be viewed as the associated graded ring of the Rees algebra
AlJ1tq, ..., Jsts] with respect to the ideal generated by the elements of I.
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For short, set R = R(I|Jy,...,Js). Then R is a standard N**!1-graded algebra.
Hence it has a Hilbert polynomial Pg(u). For any o € N**1 with |a| = deg Pr(u)
we will set

ea(I|J1,. .., Js) == eq(R).
The mixed multiplicities ey (I]J1, ..., Js) were studied first for m-primary ideals in
[Ba], [R1] [R2], [Tel] and then for arbitrary ideals in [KaMV], [KaV], [Tr2], [Vi].
Throughout this section let
J = Jl---J57
d:=dimA/(0: J>),
where for any ideal Q@ C A we set Q : J* = J,,5,(Q : J™). Moreover, for any

finitely generated A-module F we will denote by e(I, E') the Samuel multiplicity of
FE with respect to I.

Theorem 1.2. Let R = R(I|Jy,...,Js). Assume that d = dim A/(0 : J*°) > 1.
Then

(a) deg Pr(u) =d -1,

(b) e(dfl’o’m’()) (I|J1, ey JS) = 6([, A/(O : Joo))
Proof. Let I', Jj, ..., J. be the sequence of ideals generated by I, J,...,Js in the
quotient ring A/(0: J*°) and put R’ = R(I’|.J{, ..., J.). Then

R, = (I J . Jd 4 (02 J%)) /(T LT 4 (0 T%))
= U0 Ut (T i Tt U0 T T (0 1 J)).
Since T¥oJy"* ... J¥% N (0:J*®) =0 for u>> 0, we get R, = R/, for u > 0. Hence
PR(U) = PR/(U).

So we may replace A by A/(0: J°°). If we do so, we may assume that 0 : J* =0

and d =dim A > 1. Then ht J > 1. For A = (1, ...,1) we have

RN= 1/ rtgr = AL/ (D),
n>0
where A[IJt] is the Rees algebra of the ideal IJ. Since ht(IJ) > 1, we have
dim A[IJt] = d + 1 [Va, Corollary 1.6]. Hence dim R* < d. By Lemma [T} this
implies deg Pr(u) < d — 1.
On the other hand, dim A/J™ < d for any m > 1. Therefore,

m g™/t gm) . Pg(n,m,...,m)

el A) =e(l,J") = lim = = — A g1y
for m > 0. Since e(I, A) > 0, this implies dim Pr(u) > d — 1. So we can conclude
that deg Pr(u) = d — 1 and that e(q_1,,..0)(R) = e(l, A). O

The computation of mixed multiplicities can be passed to the case e(q_1,,...,0)(R).
For this we shall need the following notation.

Given a standard Z**!-graded algebra S, we will denote by S, the ideal of S
generated by the homogeneous elements of degrees with positive components. A
sequence of homogeneous elements z1, ..., z,, in S is called filter-reqular if

(21, s 2i-1) * Zilu = (2150 Zic1)u
for u > 0, ¢ =1,...,m. It is easy to see that this is equivalent to the condition
z; ¢ P for any associated prime P 2 Sy of S/(z1, ..., zi—1).
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Remark. Filter-regular sequences have their origin in the theory of Buchsbaum
rings [SV] Appendix]. It can be shown that if S is a standard graded algebra over
a field, then Proj(S) is an equidimensional Cohen-Macaulay scheme if and only if
every homogeneous system of parameters of S is filter-regular.

We will now work in the Z**!-graded algebra
Si= @ rvogpr. g ettt et

u€Zs+1
Let €1, ...,e,m be any non-decreasing sequence of indices with 1 < ¢; < s. Let
21, ..., T, be a sequence of elements of A with z; € J,, i = 1,...,m. We denote
by x; the residue class of z; in JEi/IJl...JEi_lJ;JEH_L..JS. We call xq,...,2.m,
an (€1, ...,em)-superficial sequence for the ideals Ji,...,Js (with respect to I) if
x7, ..., oy, is a filter-regular sequence in S.

The above notion can be considered as a generalization of the classical notion
of a superficial element of an ideal, which plays an important role in the theory of
multiplicity. Recall that an element x is called superficial with respect to an ideal
a if there is an integer ¢ such that

(an . I) Na = an—l

for n > 0. A sequence of elements x1, ..., x,, € ais called a superficial sequence of
a if the residue class of x; in A/(x1,...,2;—1) is a superficial element of the ideal
a/(x1,.yxi—1), i =1, ...,m. It is known that this is equivalent to the condition that
the initial forms of 1, ..., Z,, in a/a? form a filter-regular sequence in the associated
graded ring €,,-, a”/a" ! (see e.g. [Irll Lemma 6.2]).

We may use superficial sequences to reduce the dimension of the base ring.

Lemma 1.3. Let Q be an ideal of A generated by an (€1, ..., Em)-superficial sequence
of Ji,y ..y Js. Let I, Jq, ..., Js be the sequence of ideals generated by I, Jy, ..., Js in the

quotient ring A/Q and put R = R(I|.J1, ..., Js). Let o be the number of the indices
i such that &; = j, j = 1,...,s. Let A%12) Pp(y) denote the (0,ar, ..., a)-
difference of the polynomial Pr(u). Then

Pp(u) = Al0or02) pp(y),

Proof. If m = 1, we may assume that (aq,...,as) = (1,0,...,0). Then Q = (z),
where x € J; such that (0 : z*), = 0 for v > 0. This means

(1) (ot t2 gt Jeettopy q e i Jie = [rott gt Juett
As a consequence we get
([uotl gt quatl | qustl. gy o giatt  Justl = puotl puatl | justl

for u > 0. Consider R as a quotient ring of S. The above formula shows that
(Og : ), = 0 for u > 0. Hence Pgr/(o,.0+)(v) = Pr(u). Now, from the exact
sequence

0—R/(0:ga") “5 R — R/(z") — 0
we can deduce that
(2) Prj(ee) (u) = AOL00 Py (u).
On the other hand, (1) implies

Juotl a2 Justlqgpro i JUs = gppuotl it | qustl
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for (ug,u1,...,us) > 0 and v; = uz,u; + 1,9 = 0,1, ..., s. Using this formula we can
easily show that

71’
TUO g8 Jte gV JU . Vs = gmax{uowo) pmax{m—lo) | gmax{usv.}

for u > 0, v > 0. By the Artin-Rees lemma, there exists (cq, c1, ..., ¢s) € N**1 with
¢1 > 0 such that

I gt L Jds N (x) C oM™ i [ Jgs%
for u; > ¢;, 1 =0,1,...,s. Therefore,
T gt L Jds N (x) = TUO g L s g Hom o Jimer | Jus =6
= pIvo gl gy | Jus
for w > 0. This implies
R, = (I" g Jt x)/(T"T i T x)
= JUo g gl J(TH T g LT TR g T 0 (2)
= JUo g Jls [Tt g gt U it U U
= (B/(2"))u-

Thus, Pg ()= Prj(;+)(u). Combining this with (2) we get Pg(u)=A10) Pp(v)
which proves the case m = 1.

If m > 1, we may assume that oy > 0. Then zy € Jy. Let I*, J}, ..., J! denote
the sequence of the ideals generated by I, Ji, ..., Js in the quotient ring A/(z1). Put
R* = R(I*|Jf, ..., J¥). As shown above, we have

(3) Pre(u) = AOL0--0) pp(yy),
Let 5% := @ egers (IF) 0 (J7) "t .o (J7) e /(I*) ot (J7) FL L (JF) ™+ For u>> 0
we have
[S/(x3)]y = TU0Ji .. Jls J(Tuott it | qustd g puo gin=l juz | jus)
= Juo g Jus /([rott il qustl () (T gL gt
= (IU0Jf T ) (T et )
=S,
Since [(z7, ..., x_1) : Tilu = (27, ...y xf_1)y for u >0, i = 2,...,m, we also have
(25,2 1)S™ @)y = (a3, oy xi_1) S0

for u > 0, ¢ = 2,...,m. Therefore, z5,...,z% is an (1 — 1,e9,...,&,)-superficial

o vm

sequence of the ideals J7, ..., J7. Now, we may use induction on m to assume that
PR(U) — A(O,al—l,a2,...,as)PR* (U)
Combining this with (3) we get Pg(u) = A:@1:0208) pp(y;), O

Using Theorem and Lemma we obtain the following criterion for the
positivity of mixed multiplicities.

Theorem 1.4. Let a = (ap, 1, ...,as) be any sequence of non-negative integers
with |a] = d—1. Let Q be any ideal generated by an (a, ..., as)-superficial sequence
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of the ideals I, Jy, ..., Js. Then eq(I|J1,...,Js) > 0 if and only if dim A/(Q : J*) =
ag + 1. In this case,

ealI| T,y Jy) = e(I, A)(Q : J®)).

Proof. If a = (d — 1,0,...,0), the conclusion follows from Theorem If a #£
(d—1,0,...,0),thend > 2. Let R, I, Ji, ..., Js be as in Lemmal[[.3l Then deg Py (u) <
d—1—m = ag where m = a1 + -+ - + a,. Write

I|Jy, ..., J
Pgr(u) = Z Wuﬁ + {terms of degree < a}.
BEN=+1,|B|=ao )
Then
e(ao,al,‘..,(xs)(I|J17 ceey JS) = e(ozo,(),..‘,O) (I|J17 ceey JS).
If eq(IJ1, ..., Js) > 0, then e(n,0,...0)(I]J1, .., Js) > 0. Therefore, deg Pr(u) =
ao. By Theorem [[L2(a), this implies dim A/(Q : J*) = ap +1.
Conversely, if dim A/(Q : J*) = ap + 1 and if we put J = J;...Js, then

€(a0.0,.,0) (11, -, Js) = e(I, A/(0: J)) = e(I, A/(Q : )

by Theorem [L2(b). Since the Samuel multiplicity is always positive, this implies
€(a0,0,...,0)L]J1, ..., Js) > 0. So we can conclude that ey (I].J1, ..., Js) > 0 if and only
ifdimA/(Q:J*®) =ap+ 1. O

Let k be the residue field of A. Using the prime avoidance characterization of a
superficial element we can easily see that superficial sequences exist if k is infinite.
In fact, general elements of Jy, ..., Js always form a superficial sequence. Recall that
a property holds for a general element x of an ideal @ = (y1, ..., ym) if there exists
a non-empty Zariski-open subset U C k™ such that whenever xz = Z;"Zl cjr; and
the image of (c1, ..., ¢y ) in &™ belongs to U, then the property holds for x.

Lemma 1.5. Assume that k is infinite. Any sequence which consists of ay general
elements in Ji, ... , as elements in Js forms an (aq, ..., as)-superficial sequence for
the ideals Jq, ..., Js.

Proof. Let x1,...,z,,, be a sequence of such general elements, m = a; + -+ + as.
Assume that z; € J,,. Since z; is a general element of J,,, we have z} ¢ P for any
associated prime P of (z},...,a}_,) with P 2 J., /1 Jy...Je, _1JZ J- 41...J5. Since Sy
is contained in the ideal generated by the elements of J., /IJ;...J., 1 ij Jeit1--Js,
this implies ) ¢ P for any associated prime P of (7, ...,x;_;) with P 2 S;. Hence

x7, ..., oy, is a filter-regular sequence in S. O

Corollary 1.6. Assume that the local ring A has infinite residue field. Let Q be
an ideal generated by oy general elements in Jyi, ... , an elements in J,. Then
ea(I|J1, ..y Jn) >0 if and only if dim A/(Q : J®°) = ag + 1. In this case,

ea(I|J1, ..., Jn) = e(I, A/(Q : J*)).

Now we shall see that the characterization of mixed multiplicities of m-primary
ideals given in [Tel] is a special case of Corollary

Corollary 1.7 ([Tell Ch. 0, Proposition 2.1]). Assume that the local ring A has
infinite residue field. Let I,Jy,...,Js be m-primary ideals. Let a = (ag, vy, ...y Qts)
be any sequence of non-negative integers with |a| = dim A — 1. Let P be an ideal
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of A generated by ag + 1 general elements in I, ay general elements in Jy, ... , s
elements in Js. Then

ea(I|J1,..., Js) = e(P, A).

Proof. Let @ be the subideal of P generated by «; general elements in Jy, ... , ag
elements in J,. By Lemma [[L5] these elements form a superficial sequence of the
ideals Jq, ..., Js. Since Ji, ..., Js; are m-primary ideals, @ is generated by a subsystem
of parameters of A and J is an m-primary ideal. Therefore,

dimA/(Q:J*)=dimA/Q =dimA— (a1 + -+ as) =ap + 1.
By Theorem [[L4] and the above equation, we get
ea(I|J1, .y Js) =e(I, A)(Q: J*®)) =e(I,A/Q).

But e(I, A/Q) = e(P, A/Q) because P generates a minimal reduction of I in A/Q.
So we can conclude that

eaI|J1, ..., Js) = e(P,A/Q) = e(P, A).

Using Corollary we obtain interesting properties of mixed multiplicities.

Corollary 1.8. Let a = (ap, a1, ...,a5) be any sequence of non-negative integers
with |a] =d — 1. Assume that eq(I|Jy1,...,Jn) > 0. Then

(a) eq(I'|1,...,Jdn) >0 for any m-primary ideal I',

(b) eg(I|J1,...,Jdn) >0 for all 3= (Bo,...,0n) with |8 =d—1 and 3; < a,
1=1,...,n.

Proof. Without loss of generality, we may assume that the residue field of A is
infinite. Let @) be an ideal generated by «; general elements in Jy, ... , o, elements
in J,.

(a) By Corollary [[L6] the assumption implies dim A/(Q : J>°) = ag + 1. Since
this condition does not depend on I, we also have e, (I'|Jy, ..., Jn) > 0.

(b) Let @' denote the subideal of @ generated by (; general elements in J;,
i=1,..,n. Put A* = A/Q', I* = [A* and J; = J;A*. Let R* = R(I*|J,...,J5).
By Lemma [[.3] we have

Pr-(u) = AOPL0n) pr(y,),
From this it follows that
€(ag,01—Brresan—Bn) L NIy T) = ea(I] 1, .. Jy) > 0.
Hence deg Pr«(u) = (d—1) — (61 + - - + Bn). By Theorem [[2](a), this implies
dim A/(Q" : J*°) = deg Pr-(u) + 1 = (o + 1.
Therefore, eg(I|Ji,...,J,) > 0 by Corollary O

2. MIXED VOLUMES AND TORIC RINGS

The aim of this section is to interpret mixed volumes as mixed multiplicities.
Usually, a mixed volume is defined for a collection of n convex polytopes in R™
(see e.g. [CLQ]). But it is obvious that it may also be defined for any collection of
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convex polytopes in R™ as follows. Let @1, ...,Q, be convex polytopes in R™ with
dim(@Q1 + - + Q) < r. We call the value

MVo(Quy- Q)= > (=1)""V(Qi 4+ Qi)
h=11<i1<...<ip <7
the mized volume of Q1, ..., Q.. Here V, denotes the r-dimensional Euclidean vol-
ume.

Let Q = (Q1,...,Qs) be a sequence of convex polytopes in R”. Let A =
(M1, ..., As) be any sequence of non-negative integers. We denote by AQ the Minkow-
skisum A1 Q1+ - -+AsQs and by Q) the multiset of A\; polytopes Q1,...,\s polytopes
Q@s. Minkowski showed that the volume of the polytope AQ is a homogeneous poly-
nomial in A whose coefficients are mixed volumes up to constants (see e.g. [CLO.
Ch. 7, Proposition 4.9]).

Proposition 2.1 (Minkowski formula). Let r = dim(Q1 + -+ + Qs). Then

VOQ = Y L MV(QuX

a€N? |a|=r

We will use the Minkowski formula to establish the relationship between mixed
volumes and mixed multiplicities. For that we need to work with graded toric rings.

Let A = k[x1,...,z,] be a polynomial ring over a field k. Let M be a finite set
of monomials in A. The subalgebra k[M] of A generated by the monomials of M
is called the toric ring (or affine semigroup ring) of M. We associate with every
monomial z{*...z% € A the lattice point a = (a1, ..., a,,) € N™. Many ring-theoretic
properties of k[M] can be described by means of the lattice points of M (see e.g.
[BH., Section 6] or [Sta, Chap. I]). For instance,

dim k[M] = rank Z(M),

where Z(M) denotes the subgroup of Z" generated by the lattice points of M.

Assume furthermore that the lattice points of M lie on an affine hyperlane of R™.
This is for example the case when M consists of monomials of the same degree.
Then k[M] has a natural N-graded structure. The multiplicity e(k[M]) can be
expressed in terms of the lattice points of M as follows.

Let Qs denote the convex hull of the lattice points of M in R™. Then Qs is a
convex polytope with

dim Qpr = rank Z(M) — 1.

Proposition 2.2. Let r =rankZ(M) — 1. Let E be any subset of M such that its
lattice points form a basis of Z(M). Then
Ve(Qnr)
M= @

This multiplicity formula is a consequence of Ehrhart’s theory for the number
of lattice points in lattice polytopes (see e.g. [BH, Theorem 6.3.12] or [Stal, Chap.
I, Theorem 10.3]). The number V,.(Qr)/V.(QE) is often called the normalized
volume of the polytope Qs with respect to the lattice Z(M).

In the following we will be concerned with products of finite sets of monomials,
which is the counterpart of Minkowski sums of convex polytopes.

Let My, ..., My be sets of monomials in A such that each M; consists of monomials
of the same degree. For any sequence A = (Aq, ..., As) of positive integers we denote
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by M* the set of all products of A\; monomials of Mj,..., A\, monomials of M. Using
the above propositions we can express the multiplicity of the toric ring k[M?*] in
terms of mixed volumes.

Corollary 2.3. Let r = rank Z(M V) — 1. Let E be any subset of M1
such that its lattice points form a basis of Z(M™V)). Let Q be the sequence of
polytopes Qury, -, Q.- Then

1

1 «
e(k[MA)) = V(On) QEN;”:T S MVA(Qa)A".

Proof. Every lattice vector of M? is a sum of \; lattice points of Mj,...,\, lattice
points of M. Therefore,

QMX :/\1Q1+"'+/\SQS :/\Q

Since Z(M?*) = Z(M 1)), we have rank Z(M?>) = r + 1. Using Proposition
we obtain

V:(AQ)

e(k[M?]) = :

(RMTD) Vi (Qr)

Hence the conclusion follows from Proposition 2.1 O

This formula for the multiplicity of the toric rings k[M*] resembles the formula
for the multiplicity of diagonal subalgebras in Lemma [Tl Therefore, if we can find
a standard multigraded algebra such that the toric rings k[M?*] are its diagonal
subalgebras, then a comparison of these formulas will imply a relationship between
mixed volumes and mixed multiplicities.

Theorem 2.4. Let A = k[x1,...,x,] and My, My, ..., M be a sequence of sets of
monomials such that My = {x1,...,x,} and each M; consists of monomials of the
same degree d; for i = 0,1,...,s. Let m be the mazimal graded ideal of A and J;
the ideal generated by the monomials of M;. Let R = R(m|Jy,...,Js) and let Q be
the sequence of polytopes Qury, Qnys - Qi Then deg Pr(u) =n —1 and for any
a € NSt with |a| =n — 1,
_ MVn—l(Qa)
= 7\/5 i
Proof. Let S denote the subalgebra of the polynomial ring A[tg, t1, ..., 5] generated
by all monomials of the form f;t; with f; € M;. Then S is a standard Ns*1-
graded algebra over k. We shall see that R = S as N*Tl-graded algebras. Let
u = (ug,u1, ..., us) be any sequence of non-negative integers. The vector space R,
has a basis consisting of the monomials of m*°Jj"*...J¥s which are not contained
in m"OHJll“...J;‘S. Since each J; is generated by M; and since M; consists of
monomials of the same degree, these monomials are of the form fyfi...fs, where
each f; is a product of w; monomials of M;, i = 0,1, ..., s. By mapping the elements
fofi-fs € Ry to the elements (fotg°)(fit]*)...(fati") € S, we obtain an N*T1-
graded isomorphism of R and S.

Let A = (Mo, A1,..., A\s) be any sequence of s + 1 positive integers. The above
isomorphism induces an N-graded isomorphism of diagonal subalgebras R = S*.

Let M* denote the set of all products of Ao monomials of Mj,..., A, monomials in
M. Then

ea(m|J1, ceny JS)

S* = k[MA].
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Let f be a product of s monomials of Mi,...,M;. Put E = {x1f,...,znf} C
M1 Then Z(F) contains all lattice points of the form e; — e;, where eq, ..., e,
denote the basic vectors of R™. Therefore, Z(FE) contains all lattice points of the
hyperplane x; + --- + 2, = deg f + 1. Since all monomials of M1 have the
degree deg f + 1, the lattice points of E form a basis for Z(M®+1). Hence
rank Z(M(l’“"l)) = n. Since Qg is congruent to the convex polytope spanned by
the points e;,

Vn

Vi-1(QE) = m

Applying Corollary we get
n—1)! 1 o
e(S*) = ( ) > aMVn_l(Qa))\ .

n
aeNstHl |a|=n—1

On the other hand, since dim S* = rank Z(M?*) = n, using Lemma [Tl we get
deg Ps(u) =n —1 and

(S =(m-1 3 %ea(S)XX.

aeNstHL |a|=n—1

Since the above two formulas for e(S*) hold for all sequences A of positive integers,
we can conclude that their corresponding terms are equal. This means

_ MVn—l(Qoz)
\/ﬁ

for any o € N**! with |a| =n — 1. O

eq(S)

It is now easy to interpret mixed volumes as mixed multiplicities of ideals.

Corollary 2.5. Let Q,...,Q, be an arbitrary collection of lattice convex polytopes
in R™. Let A = k[zg,x1, ..., Tn] and let m be the mazimal graded ideal of A. Let M;
be any set of monomials of the same degree in A such that Q; is the convezr hull of
the lattice points of their dehomogenized monomials in k[xy,...,x,]. Let J; be the
ideal of A generated by the monomials of M;. Then

MVo(Q1; -, Qn) = €(o,1,...,1) (M1, ..., Jn).

Proof. By definition, the projection of the lattice point of a monomial on the hy-
perplane xy = 0 is the lattice point of its dehomogenized monomial. Therefore, the
convex hull @y, of the lattice points of M; is the projection of the polytope Q); on
the hyperplane zy = 0. As a consequence, the volume V,,(Qy,) is proportional to
V,.(Q;). This proportion can be computed as the volume of the convex hull Qg of
the basic vectors eg, ..., e, of R**1. Since V,,(Qg) = v/n + 1, we obtain

V(o = L2l

From this it follows that the corresponding mixed volumes are also proportional:

MV”(Ql,aQn) - v (?/Afm QMw)
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On the other hand, applying Theorem [Z.4] to the sequence My, M1, ..., M,, of mono-
mials in n + 1 variables we obtain

MV (Qny s -y Qua,y
eo,1,..,1)(m|J1, ..., Jp) = (?/J\i__’_l Qum )

Therefore, we can conclude that MV,,(Q1,...,Qn) = e1,...1)(M[J1, ..., Jn). O

An immediate consequence of the interpretation of mixed volumes as mixed
multiplicities is the non-trivial fact that mixed volumes are always non-negative
numbers. In fact, we can reprove the following result given in [Fu2l p. 117].

Corollary 2.6. Let Py,...,P, and Q1,...,Q, be two sequences of convex lattice
polytopes in R™ with P; O Q;. Then
MV, (P1, ... Py) > MV (Qy, ..., Qn).
Proof. By Corollary we have
MVy(Py, ..., Pa) = ea,..,1)(m| 11, ..., Iy),
MVy(Q1, ..., Qn) = e,....1y(m[J1, ..y Jn),

where I; and J; are ideals generated by monomial ideals with the same degree and
I; 2 J;. Note that the vector space m¥o [} .. .[Un /m@o 1] [Un contains the vector
space m“o J{'1 . Jun /muotl i Jun for all u = (ug, u1, ..., un) € N*T1. Then
Hrmn,,....1,) (W) > Hp(m|,....,.0,) (W)
Since e,1,...,1)(m|11, ..., I,) and e 1,... .1y (m[J1, ..., Jn) are the coefficients of one of
the leading terms of the corresponding Hilbert polynomials, we obtain
e,1,..0y (M1, ... In) > e, 1y(m[Jr, ..., Jn),

which implies the conclusion. (I

Remark. Relations among mixed volumes of lattice polytopes always hold for arbi-
trary convex polytopes by approximating them with rational convex polytopes and
then using finer lattices [Te3].

Now we come to the famous Alexandroff-Fenchel inequality between mixed vol-
umes:

MVn(Q17 seey Qn)2 Z MVn(Q17 Q17 Q?n ceey Q’I’L)MVTL(Q27 Q27 Q?n seey QTL)

Khovanski [Kh| and Teissier [Te3] used the Hodge index theorem in intersection
theory to prove this inequality. This leads us to believe that a similar inequality
should hold between mixed multiplicities.

Question 2.7. Let (A,m) be a local (or standard graded) ring with dimA =
n+1 > 3. Let I be an m-primary ideal and J,...,J, ideals of height n. Put
a=1(0,1,...,1). Is it true that

ealI| 1y s Jn)? > ea(I|J1, J1, I3y ooy Jn)ea(I| Ty T2, T3, oy ) 2

Using Theorem [[.4] we can reduce this theorem to the case dim A = 3. In this
case, we have to prove the simpler formula:

eo,1,1) (| J1, Jz)? > eo,1,1) (| J1, J1)eo,1,1) (|2, J2).

Unfortunately, we were unable to give an answer to the above question. The diffi-
culty can be seen from the following observation.
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Remark. The above inequality does not hold if Ji, ..., J, are m-primary ideals. In
this case, we can even show that the inverse inequality holds, namely,

ea(I|J1) bS] JTL)Q S ea(I|J1; J17 ‘]37 bS] Jn)ea(I|J27 ‘]27 J37 Tty Jn)
where oo = (0,1,1,...,1). Using Corollary [[7] we can translate it to the inequality
6(1)1)(J1|J2)2 S 6(J1, A)E(JQ, A)

for a two-dimensional ring A. This inequality was proved first by Teissier [Te2] for
reduced Cohen-Macaulay rings over an algebraically closed field of characteristic
zero and then by Rees and Sharp [RS] in general.

It is known that computing mixed volumes is a hard enumerative problem (see
[EC], [HST], [HS2] for algorithms and software for doing these computations). In-
stead of that we can now compute mixed multiplicities of the associated graded
ring of the multigraded Rees algebra A[Jity, ..., Jot,] with respect to the ideal m.
By Corollary [[.6] these mixed multiplicities can be interpreted as Samuel multi-
plicities. The computation of these multiplicities can be carried out by computer
algebra systems such as Cocoa, Macaulay 2 and Singular.

3. BERNSTEIN’S THEOREM

Let k[zi?!, ..., 2] be a Laurent polynomial ring over a field k. For any Laurent
polynomial
f= Z cax® (cq € k)
a€zZm™
we will denote by M(f) the set of monomials x* with ¢, # 0. Let Q; denote the
convex hull of the lattice points a with ¢, # 0 in R", i.e. Qf = Qpz(y)- One calls
@y the Newton polytope of f.

Bernstein’s theorem says that the mixed volume of the associated Newton poly-
topes of n Laurent polynomials is a sharp bound for the number of common zeros
in the torus (C*)™ [Be, Theorem A]. Here we will prove Bernstein’s theorem by
purely algebraic means for any algebraically closed field k.

Theorem 3.1. Let k be an algebraically closed field. Let f1,..., f, be Laurent poly-
nomials in k[zi!, ..., x1] with finitely many common zeros in (k*)™. Then the num-
ber of common zeros of fi,..., fn in (E*)™ is bounded above by MV, (Qy,,...,Qy,).
Moreover, this bound is attained for a generic choice of coefficients in fi1, ..., fn if

k has characteristic zero.

Here, a generic choice of coefficients in f1, ..., f,, means that the supporting mono-
mials of fi, ..., f, remain the same while their coefficients vary in a non-empty open
parameter space.

Now we are going to give a homogeneous version of Bernstein’s theorem.

Let f denote the homogenization of a Laurent polynomial f in k[moﬂ, xlﬂ, e
xfl] Then Qg is a polytope in R™*+1. Its projection to the hyperplane zq = 0
is a polytope canonically identified with Q. We have V,,(Qsn) = vn +1 V,(Qy).
Hence

MVn(Qflh,,Qﬂ:) =vn+1 MVn(Qfl,...,an).

It is also obvious that the number of common zeros of f1, ..., f, in (k*)™ is equal to
the number of common zeros of f]', ..., f* in Py, where P}, denotes the set of all
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points of the projective space P} with non-zero components. Thus, Theorem [B]
can be translated as follows.

Theorem 3.2. Let k be an algebraically closed field. Let g1, ..., g, be homogeneous

Laurent polynomials in k:[:cgl, :clil, ooy 2] with finitely many common zeros in Py..
MV (Qgys - Q)

Then

vn+1
Moreover, this bound is attained for a gemeric choice of coefficients in g1, ..., gn if
k has characteristic zero.

Ha e Pl | gi(a)=0,i=1,2,...,n} <

We may reduce the above theorems to the case of polynomials. In fact, if we
multiply the given Laurent polynomials with an appropriate monomial, then we will
obtain a new system of polynomials. Obviously, the new polynomials in (k*)" or
in P?. have the same common zeros. Since their Newton polytopes are translations
of the old ones, their mixed volumes do not change, too.

Now assume that g1, ..., g, are homogeneous polynomials in A = k[xg, z1, ..., Zy].
Let M; be the set of monomials occuring in g;. Let m be the maximal graded ideal
of A and J; the ideals of A generated by M;. Put

R =R(m|J1,..., Jn).
We know by Theorem 2.4 that deg Pr(u) = n + 1 and

MV, (Qg,, .- Qy,)
6(0711"'11) (R) - (\/f’gﬁ . '

Therefore, Theorem follows from the following result.

Theorem 3.3. Let k be an algebraically closed field. Let g1, ..., g, be homogeneous
polynomials in k[xog, z1, ..., xs]| with finitely many common zeros in P.. Then

Ha e Pr. | gi(a) =0, i =1,2,...,n} <epn,..1)(R).

Moreover, this bound is attained for a gemeric choice of coefficients in g1, ..., gn if
k has characteristic zero.

Proof. Let @ be the ideal (g1, ..., gn). Then there is a one-to-one correspondence
between common zeros of g, ..., g, in P}. and the one-dimensional homogeneous
primes of A which contain @ : (z¢...z,)*°. As a consequence, the assumption
on gi, ..., g, implies that @ : (z¢...z,)* is a one-dimensional ideal. Therefore,
the number of common zeros of g, ..., g, in P}. is equal to the number of minimal
associated prime ideals of Q : (xg...x,, ) which is bounded above by the multiplicity
e(A/(Q : (zg...xy)°)) in view of the associativity formula for multiplicities. By the
principle of conservation of number (see e.g. Fulton [Full Section 10.2]), we only
need to show that for a generic choice of the coefficients of g1, ..., gn, @ : (zg...Tn)>°
there is a radical ideal with

e(A/(Q: (20...70)%)) = €(0,1,...,1) (R).
Let J := J;...J,. We may multiply g1, ..., g, with xy...x,, to obtain a new system
of equations with J C (xg...2,). Since (zg...x,)™ € J for m > 0,

Q: (g..xy)® =Q : J™.
By Corollary we have for a generic choice of the coefficients of g1, ..., gn,

e(A/(Q:J>)) =ewa,.1)(R).
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Thus, the number of common zeros of g, ..., g, in P}. is bounded by the mixed
multiplicity eg1,...,1)(R). It remains to show that @ : J* is a radical ideal for a
generic choice of the coefficients of g1, ..., g, if k has characteristic zero. But this
follows from Bertini theorem [Fl Satz 5.4(e)]. O

Finally, we would like to remark that the last statement of the above theorems
does not hold if the ground field has positive characteristic.

Example. Let k be an algebraically closed field with char(k) = p. Let f(x) =
axP + b be a polynomial in one variable, a,b € k. For a,b # 0 we choose ¢ € k such
that ¢? = b/a. Then f(x) = a(x + ¢)? has only one zero in k*, whereas the Newton
polygon of f has volume p.
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