EQUIVALENCE OF DOMAINS ARISING FROM DUALITY OF ORBITS ON FLAG MANIFOLDS III

TOSHIHIKO MATSUKI

ABSTRACT. In Gindikin and Matsuki 2003, we defined a G_K-invariant subset $C(S)$ of G_C for each K_C-orbit S on every flag manifold G_C/P and conjectured that the connected component $C(S)_0$ of the identity would be equal to the Akhiezer-Gindikin domain D if S is of nonholomorphic type. This conjecture was proved for closed S in Wolf and Zierau 2000 and 2003, Fels and Huckleberry 2005, and Matsuki 2006 and for open S in Matsuki 2006. It was proved for the other orbits in Matsuki 2006, when G_R is of non-Hermitian type. In this paper, we prove the conjecture for an arbitrary non-closed K_C-orbit when G_R is of Hermitian type. Thus the conjecture is completely solved affirmatively.

1. INTRODUCTION

Let G_C be a connected complex semisimple Lie group and G_R a connected real form of G_C. Let K_C be the complexification in G_C of a maximal compact subgroup K of G_R. Let $X = G_C/P$ be a flag manifold of G_C, where P is an arbitrary parabolic subgroup of G_C. Then there exists a natural one-to-one correspondence between the set of K_C-orbits S and the set of G_R-orbits S' on X given by the condition:

$$(1.1) \quad S \leftrightarrow S' \iff S \cap S' \text{ is non-empty and compact}$$

(M2). For each K_C-orbit S we defined in [GM1] a subset $C(S)$ of G_C by

$C(S) = \{ x \in G_C \mid xS \cap S' \text{ is non-empty and compact} \}$

where S' is the G_R-orbit on X given by (1.1).

Akhiezer and Gindikin defined a domain D/K_C in G_C/K_C as follows ([AG]). Let $\mathfrak{g}_R = \mathfrak{k} \oplus \mathfrak{m}$ denote the Cartan decomposition of $\mathfrak{g}_R = \text{Lie}(G_R)$ with respect to K. Let t be a maximal abelian subspace in $i\mathfrak{m}$. Put

$$t^+ = \{ Y \in t \mid |\alpha(Y)| < \frac{\pi}{2} \text{ for all } \alpha \in \Sigma \}$$

where Σ is the restricted root system of \mathfrak{g}_C with respect to t. Then D is defined by

$$D = G_R(\exp t^+)K_C.$$
Remark 1.2. When $G_\mathbb{R}$ is of Hermitian type, there exist two special closed K_C-orbits $S_1 = K_C B / B = Q / B$ and $S_2 = K_C w_0 B / B = Q w_0 / B$ on the full flag manifold G_C / B, where $Q = K_C B$ is the usual maximal parabolic subgroup of G_C defined by a nontrivial central element in $i \mathfrak{r}$ and w_0 is the longest element in the Weyl group. For each parabolic subgroup P containing the Borel subgroup B, two closed K_C-orbits $S_1 P$ and $S_2 P$ on G_C / P are called of holomorphic type and all the other K_C-orbits are called of nonholomorphic type. Especially all the non-closed K_C-orbits are defined to be of nonholomorphic type.

When $G_\mathbb{R}$ is of non-Hermitian type, we define that all the K_C-orbits are of nonholomorphic type.

Let S_{op} denote the unique open dense $K_C B$ double coset in G_C. Then S_{op}' is the unique closed $G_\mathbb{R} B$ double coset in G_C. In this case we see that

$$C(S_{op}) = \{ x \in G_C \mid x S_{op} \supset S_{op}' \}.$$

It follows easily that $C(S_{op})$ is a Stein manifold (cf. [GM1], [H]). The connected component $C(S_{op})_0$ is often called the Iwasawa domain.

The inclusion

$$D \subset C(S_{op})_0$$

was proved in [H]. (Later [M3] gave a proof without complex analysis.) On the other hand, it was proved in [GM1], Proposition 8.1 and Proposition 8.3, that $C(S_{op})_0 \subset C(S)_0$ for all $K_C P$ double cosets S for any P. So we have the inclusion

$$(1.2) \ D \subset C(S)_0.$$

Hence we have only to prove the converse inclusion

$$(1.3) \ C(S)_0 \subset D$$

for K_C-orbits S of nonholomorphic type in Conjecture 1.1.

If S is closed in G_C, then we can write

$$C(S) = \{ x \in G_C \mid x S \subset S' \}.$$

So the connected component $C(S)_0$ is essentially equal to the cycle space introduced in [WW]. For Hermitian cases the inclusion (1.3) for closed S was proved in [WZ2] and [WZ3]. For non-Hermitian cases it was proved in [FH] and [M4].

When S is the open $K_C P$ double coset in G_C, the inclusion (1.3) was proved in [M4] for an arbitrary P generalizing the result in [B].

Recently the inclusion (1.3) was proved in [M5] for an arbitrary orbit S when $G_\mathbb{R}$ is of non-Hermitian type. So the remaining problem was to prove (1.3) for non-closed and non-open orbits when $G_\mathbb{R}$ is of Hermitian type.

In this paper we solve this problem.

In the next section we prove the following theorem.

Theorem 1.3. Suppose that $G_\mathbb{R}$ is of Hermitian type and let S be a non-closed $K_C P$ double coset in G_C. Then there exist $K_C B$ double cosets \bar{S}_1 and \bar{S}_2 contained in the boundary $\partial S = S^c - S$ of S such that

$$x(\bar{S}_1 \cup \bar{S}_2)^c \cap S_0^c \neq \emptyset$$

for all the elements x in the boundary of D. Here S_0 denotes the dense $K_C B$ double coset in S.
Remark 1.4. It seems that \(\tilde{S}_1 \) and \(\tilde{S}_2 \) are always distinct \(K_C \)-orbits. But we do not need this distinctness.

Corollary 1.5. Suppose that \(G_R \) is of Hermitian type and let \(S \) be a non-closed \(K_C \cdot P \) double coset in \(G_C \). Then \(C(S)_0 = D \).

Proof. Let \(S_0 \) be as in Theorem 1.3. Let \(\Psi \) denote the set of the simple roots in the positive root system for \(B \). For each \(\alpha \in \Psi \) we define a parabolic subgroup

\[P_\alpha = B \sqcup Bw_\alpha B \]

of \(G_C \). By [GM2], Lemma 2, we can take a sequence \(\{\alpha_1, \ldots, \alpha_m\} \) of simple roots such that

\[\dim_G S_0 P_{\alpha_1} \cdots P_{\alpha_k} = \dim_G S_0 + k \]

for \(k = 0, \ldots, m = \text{codim}_G S_0 \). Then it is shown in [M5], Theorem 1.4, that

\[x \in C(S) \cap D^{\text{cl}} \implies xS^{\text{cl}} \cap S_0^{\text{op}} P_{\alpha_m} \cdots P_{\alpha_1} = xS \cap S_0. \tag{1.4} \]

Let \(x \) be an element in the boundary of \(D \). Then it follows from Theorem 1.3 that

\[x(\partial S) \cap S_0^{\text{cl}} \neq \phi. \]

If \(x \) is also contained in \(C(S) \), then it follows from (1.4) that

\[x(\partial S) \cap S_0^{\text{cl}} P_{\alpha_m} \cdots P_{\alpha_1} = \phi. \]

Since \(S_0^{\text{cl}} \) is contained in the closed set \(S_0^{\text{op}} P_{\alpha_m} \cdots P_{\alpha_1} \), we have

\[x(\partial S) \cap S_0^{\text{cl}} = \phi, \]

a contradiction. Hence \(x \notin C(S) \). Thus we have proved \(C(S)_0 \subset D \). \(\square \)

Section 3 is devoted to the explicit computation of the case where \(G_R = Sp(2, \mathbb{R}) \). We use Proposition 3.2 in the proof of Lemma 2.4 in Section 2. Another simple example of the \(SU(2,1) \)-case is explicitly computed in [M4] Example 1.5.

2. Proof of Theorem 1.3

Let \(j \) be a maximal abelian subspace of \(i\mathbb{R} \). Let \(\Delta \) denote the root system of the pair \((g_C, j) \). Since \(G_R \) is a group of Hermitian type, there exists a nontrivial central element \(Z \) of \(i\mathbb{R} \) and we can write

\[g_C = f_C \oplus n \oplus p \]

where \(\Delta^+_n = \{ \alpha \in \Delta \mid \alpha(Z) > 0 \} \), \(n = \bigoplus_{\alpha \in \Delta^+_n} g_C(1, \alpha) \) and * \(\rightarrow \overline{\tau} \) denotes the conjugation in \(g_C \) with respect to \(g_R \). Let \(Q \) be the maximal parabolic subgroup of \(G_C \) defined by \(Q = K_C \exp n \). Let \(\Delta^+ \) be a positive system of \(\Delta \) containing \(\Delta^+_n \). Then it defines a Borel subgroup \(B = B(j, \Delta^+) \) of \(G_C \) contained in \(Q \).

Let \(P \) be a parabolic subgroup of \(G_C \) containing \(B \). Let \(S \) be a non-closed \(K_C \cdot P \) double coset in \(G_C \) and let \(S_0 \) denote the dense \(K_C \cdot B \) double coset in \(S \). By [M1], Theorem 2, we can write

\[S_0 = K_C c_{\gamma_1} \cdots c_{\gamma_k} wB \]

with some \(w \in W \) and a strongly orthogonal system \(\{\gamma_1, \ldots, \gamma_k\} \) of roots in \(\Delta^+_n \). Here \(W \) is the Weyl group of \(\Delta \) and

\[c_{\gamma_j} = \exp(X - X) \]

with some \(X \in g_C(j, \gamma_j) \) such that \(c_{\gamma_j}^2 \) is the reflection with respect to \(\gamma_j \).
Let Θ denote the subset of Ψ such that $P = BW_\Theta B$ where W_Θ is the subgroup of W generated by $\{w_\alpha \mid \alpha \in \Theta\}$. Let Δ_{Θ} denote the subset of Δ defined by

$$\Delta_{\Theta} = \{\beta \in \Delta \mid \beta = \sum_{\alpha \in \Theta} n_\alpha \alpha \text{ for some } n_\alpha \in \mathbb{Z}\}.$$

If $\gamma_j \in w\Delta_{\Theta}$ for all $j = 1, \ldots, k$, then it follows that $c_{\gamma_j} \in wPw^{-1}$ for all $j = 1, \ldots, k$ and therefore

$$Sw^{-1} = S_0 Pw^{-1} = K_{c_{\gamma_1}} \cdots c_{\gamma_k} wPw^{-1} = K_{c_{\gamma_1}}wPw^{-1}$$

becomes closed in G_C, contradicting the assumption. Hence there exists a j such that $\gamma_j \not\in w\Delta_{\Theta}$. Replacing the order of $\gamma_1, \ldots, \gamma_k$, we may assume that

$$\gamma_1 \not\in w\Delta_{\Theta}.$$

Let I denote the complex Lie subalgebra of \mathfrak{g}_C generated by $\mathfrak{g}_C(1, \gamma_1) \oplus \mathfrak{g}_C(1, -\gamma_1)$ which is isomorphic to $\mathfrak{sl}(2, \mathbb{C})$ and let L be the analytic subgroup of G_C for I. Then we have $(L \cap K_C)c_{\gamma_1}(L \cap wBw^{-1}) = (L \cap K_C)c_{\gamma_1}^{-1}(L \cap wBw^{-1})$ since both of the double cosets are open dense in L. Hence we have

$$S_0 = K_{c_{\gamma_1}} \cdots c_{\gamma_k} wB = K_{c_{\gamma_1}}^{-1} c_{\gamma_2} \cdots c_{\gamma_k} wB = K_{c_{\gamma_1}} \cdots c_{\gamma_k} w_{\gamma_1} wB.$$

If $\gamma_1 \not\in w\Delta^+$, then $\gamma_1 \in w_{\gamma_1} w\Delta^+$. So we may assume

$$\gamma_1 \in w\Delta^+,$$

replacing w with $w_{\gamma_1} w$ if necessary. Let ℓ denote the real rank of $G_\mathbb{R}$.

Lemma 2.1. There exists a maximal strongly orthogonal system $\{\beta_1, \ldots, \beta_\ell\}$ of roots in $\Delta_+^\mathbb{R}$ satisfying the following conditions:

(i) If γ_1 is a long root of Δ, then $\beta_1 = \gamma_1$ and $\gamma_2, \ldots, \gamma_k \in \mathbb{R}\beta_2 \oplus \cdots \oplus \mathbb{R}\beta_\ell$. (If the roots in Δ have the same length, then we define that all the roots are long roots.)

(ii) If γ_1 is a short root of Δ, then $\gamma_1 \in \mathbb{R}\beta_1 \oplus \mathbb{R}\beta_2$ and $\gamma_2, \ldots, \gamma_k \in \mathbb{R}\beta_3 \oplus \cdots \oplus \mathbb{R}\beta_\ell$.

Proof. First suppose that $\mathfrak{g}_\mathbb{R}$ is of type AIII, DIII, EIII, EVII or DI (of real rank 2). Then the roots in Δ have the same length. So we have only to take $\beta_j = \gamma_j$ for $j = 1, \ldots, k$ and choose an orthogonal system $\{\beta_1, \ldots, \beta_\ell\}$ of roots in $\Delta_+^\mathbb{R}$ containing $\{\beta_1, \ldots, \beta_k\}$.

Next suppose that $\mathfrak{g}_\mathbb{R} \cong \mathfrak{sp}(\ell, \mathbb{R})$. Write

$$\Delta = \{\pm e_r \pm e_s \mid 1 \leq r < s \leq \ell\} \cup \{\pm 2e_r \mid 1 \leq r \leq \ell\}$$

and

$$\Delta_+^\mathbb{R} = \{e_r + e_s \mid 1 \leq r < s \leq \ell\} \cup \{2e_r \mid 1 \leq r \leq \ell\}$$

as usual using an orthonormal basis $\{e_1, \ldots, e_\ell\}$ of $\mathfrak{g}_\mathbb{R}$. If $\gamma_1 = 2e_r$, then $\{\beta_2, \ldots, \beta_\ell\} = \{2e_s \mid s \neq r\}$ satisfies condition (i). If $\gamma_1 = e_r + e_s$ with $r \neq s$, then we put $\beta_1 = 2e_r$ and $\beta_2 = 2e_s$. Assertion (ii) is clear if we put $\{\beta_3, \ldots, \beta_\ell\} = \{2e_p \mid p \neq r, s\}$.

Finally suppose that $\mathfrak{g}_\mathbb{R} = \mathfrak{so}(2, 2p - 1)$ with $p \geq 2$. Then the real rank of $\mathfrak{g}_\mathbb{R}$ is two, and we can write

$$\Delta = \{\pm e_r \pm e_s \mid 1 \leq r < s \leq p\} \cup \{\pm e_r \mid 1 \leq r \leq p\}$$

and

$$\Delta_+^\mathbb{R} = \{e_1 \pm e_s \mid 2 \leq s \leq p\} \cup \{e_1\}$$

where
with an orthonormal basis \(\{e_1, \ldots, e_n\} \) of \(j^* \). If \(k = 2 \), then we have \(\gamma_1 = \beta_1 = e_1 \pm e_s \)
and \(\gamma_2 = \beta_2 = e_1 \mp e_s \) with some \(s \). If \(k = 1 \) and \(\gamma_1 = e_1 \pm e_s \), then \(\beta_1 = \gamma_1 \)
and \(\beta_2 = e_1 \mp e_s \). If \(k = 1 \) and \(\gamma_1 = e_1 \), then we may put \(\beta_1 = e_1 + e_2 \)
and \(\beta_2 = e_1 - e_2 \).

Definition 2.2. (i) Define a subroot system \(\Delta_1 \) of \(\Delta \) as follows.

If \(\gamma_1 \) is a long root of \(\Delta \), then we put

\[
\Delta_1 = \{ \pm \beta_1 \} = \{ \pm \gamma_1 \}.
\]

On the other hand if \(\gamma_1 \) is a short root of \(\Delta \), then we put

\[
\Delta_1 = \Delta \cap (\mathbb{R}\beta_1 \oplus \mathbb{R}\beta_2)
\]

(which is of type \(C_2 \)).

(ii) Put \(\Delta_2 = \{ \alpha \in \Delta \mid \alpha \) is orthogonal to \(\Delta_1 \} \).

(iii) Let \(t_j \) denote the complex Lie subalgebras of \(\mathfrak{g}_C \) generated by \(\bigoplus_{\alpha \in \Delta_j} \mathfrak{g}_C(j, \alpha) \)
for \(j = 1, 2 \).

(iv) Let \(L_1 \) and \(L_2 \) denote the analytic subgroups of \(G_C \) for \(t_1 \) and \(t_2 \), respectively.

It follows from Lemma 2.1 that

\[
c_{\gamma_1} \in L_1 \quad \text{and that} \quad c_{\gamma_2} \cdots c_{\gamma_k} \in L_2.
\]

Let \(X_j \) be nonzero root vectors in \(\mathfrak{g}_C(j, \beta_j) \) for \(j = 1, \ldots, \ell \). Then we can define a maximal abelian subspace

\[
t = \mathbb{R}(X_1 - X_1) + \cdots + \mathbb{R}(X_\ell - X_\ell)
\]
in \(\mathfrak{m} \) and a maximal abelian subspace

\[
a = \mathbb{R}(X_1 + X_1) + \cdots + \mathbb{R}(X_\ell + X_\ell)
\]
in \(\mathfrak{m} \) as in [GMI, Section 2]. Since the restricted root system \(\Sigma(t) \) is of type \(BC_\ell \)
or \(C_\ell \), the set \(t^+ \) is defined by the long roots in \(\Sigma(t) \). Hence it is of the form

\[
t^+ = \{ Y_1 + \cdots + Y_\ell \mid Y_j \in t_j^+ \}
\]

where \(t_j^+ = \{ s(X_j - X_j) \mid -(\pi/4) < s < \pi/4 \} \) by a suitable normalization of \(X_j \)
for \(j = 1, \ldots, \ell \).

Put \(T^+ = \exp t^+ \) and \(A = \exp a \). Then it is shown in [GMI, Lemma 2.1], that
\(AQ = T^+ Q \) and hence that

\[
G_R Q = K A Q = K T^+ Q
\]

by the Cartan decomposition \(G_R = K A K \). The closure of \(G_R Q \) in \(G_C \) is written as
\[
(G_R Q)^c = G_R Q \sqcup G_R c_{\beta_1} Q \sqcup G_R c_{\beta_1} c_{\beta_2} Q \sqcup \cdots \sqcup G_R c_{\beta_1} \cdots c_{\beta_k} Q
\]
where \(c_{\beta_j} = \exp(\pi/4)(X_j - X_j) \) for \(j = 1, \ldots, \ell \) ([WZI, Theorem 3.8]). We also see that

\[
(2.1) \quad G_R c_{\beta_1} \cdots c_{\beta_k} Q = K c_{\beta_1} \cdots c_{\beta_k} T_{k+1}^+ \cdots T_\ell^+ Q
\]

where \(T_j^+ = \exp t_j^+ \) since we can consider the action of the Weyl group \(W_K(T) \) on \(T \) which is of type \(BC_\ell \).

By the map

\[
\iota : xK_C \mapsto (xQ, xQ)
\]
the complex symmetric space G_C/K_C is embedded in $G_C/Q \times G_C/Q$ (WZ2). It is shown in [BHH], Section 3, and [GMI], Proposition 2.2, that
\[\iota(D/K_C) = G_R Q / Q \times G_R Q / Q. \]

Lemma 2.3. Suppose that
\[\iota(x K_C) \in G_R c_\beta Q / Q \times G_R Q / Q \]
and that γ_1 is a long root of Δ^+_k. (If the roots in Δ have the same length, then we define that all the roots are long roots.) Define a K_C-B double coset \bar{S}_1 by
\[\bar{S}_1 = K_C c_{\gamma_1} \cdots c_{\gamma_k} w B. \]
Then \bar{S}_1 is contained in $\partial S = S^d - S$ and
\[x \bar{S}_1 \cap S'_0 \neq \emptyset. \]

Proof. It is clear that we may replace x by any elements in the double coset $G_R x K_C$. By the left G_R-action we may assume that $x \in Q$. By the right K_C-action we may moreover assume that $x \in \mathcal{N}$ since $Q = \mathcal{N} K_C$. Since $K = K_C \cap G_R$ normalizes \mathcal{N}, we may assume by (2.1) that
\[x Q = c_{\beta_1} t_2 \cdots t_\ell Q \]
with some $t_j \in T^+_j$ for $j = 2, \ldots, \ell$. As in [WZ2], we write
\[c_{\beta_1} = c_\gamma = c^c \quad \text{and} \quad t_j = t_j^- t_j^+ \quad \text{for} \quad j = 2, \ldots, \ell \]
with $c^c, t_j^- \in \mathcal{N}$ and c^c, $t_j^+ \in Q$. Then we have
\[x = c^c t_2^- \cdots t_\ell^- \]
It follows from Lemma 2.1 and Definition 2.2 that $c_{\gamma_2} \cdots c_{\gamma_k} \in L_2$. Since $\text{Ad}(c_{\gamma_2} \cdots c_{\gamma_k})$ is θ-stable, the double cosets
\[S_{L_2} = (L_2 \cap K_C) c_{\gamma_2} \cdots c_{\gamma_k} (L_2 \cap w B w^{-1}) \]
and
\[S'_{L_2} = (L_2 \cap G_R) c_{\gamma_2} \cdots c_{\gamma_k} (L_2 \cap w B w^{-1}) \]
correspond by the duality ([M1], Theorem 2).

It follows from Lemma 2.1 (i) and Definition 2.2 that
\[c^c \in L_1 \quad \text{and} \quad t_2^+, \ldots, t_\ell^+ \in L_2. \]

It follows moreover from Definition 2.2 (i) that $t_1 \cong \mathfrak{s}(2, \mathbb{C})$.

Write $y = t_2^- \cdots t_\ell^-$. Then we have
\[y Q = t_2 \cdots t_\ell Q \subset T^+ Q \subset G_R Q \]
and
\[y Q \subset \overline{G_R Q}. \]
Hence we have
\[y \in L_2 \cap (C(S_1) \cap C(S_2)) = L_2 \cap D \]
by [GMI], (1.3). By the inclusion (1.2) this implies that the set $y S_{L_2} \cap S'_{L_2}$ is nonempty and closed in L_2. Take an element z of $y S_{L_2} \cap S'_{L_2}$.
Since \(\gamma_1 \in w\Delta^+ \), we have \(c^+ \in wBw^{-1} \). Since \(c^+ \in L_1 \) commutes with elements in \(L_2 \), we have
\[
\begin{align*}
 cz \in cS_{L_2} &= c^{-1}c^+y(L_2 \cap K_C)c_{\gamma_2} \cdots c_{\gamma_k}(L_2 \cap wBw^{-1}) \\
 &= c^+y(L_2 \cap K_C)c_{\gamma_2} \cdots c_{\gamma_k}(L_2 \cap wBw^{-1}) \\
 &\subset c^+yK_Cc_{\gamma_2} \cdots c_{\gamma_k}wBw^{-1} = xS_1w^{-1}.
\end{align*}
\]

On the other hand we have
\[
\begin{align*}
 cz \in cS_{L_2} &= c(L_2 \cap G_R)c_{\gamma_2} \cdots c_{\gamma_k}(L_2 \cap wBw^{-1}) \\
 &= (L_2 \cap G_R)c_{\gamma_1}c_{\gamma_2} \cdots c_{\gamma_k}(L_2 \cap wBw^{-1}) \subset S_0w^{-1}.
\end{align*}
\]

Hence \(x\bar{S}_1 \cap S_0^\prime \neq \emptyset \). It is clear that \(\bar{S}_1 \subset S_0^\prime = S^d \) because
\[
(L_1 \cap K_C)(L_1 \cap wBw^{-1}) \subset ((L_1 \cap K_C)c(L_1 \cap wBw^{-1}))^d = L_1.
\]

Now we will prove \(\bar{S}_1 \not\subset S \). Consider the map
\[
\varphi : K_C^\prime \backslash G_C/B \ni K_C\theta \rightarrow B\theta(g)^{-1}gB \in B \backslash G_C/B
\]
introduced in \(\text{Sp} \) where \(\theta \) is the holomorphic involution in \(G_C \) defining \(K_C \). We have
\[
\varphi(\bar{S}_1) = Bw^{-1}w_{\gamma_2} \cdots w_{\gamma_k}wB
\]
and
\[
\varphi(S) = \varphi(S_0P) \subset Pw^{-1}w_{\gamma_1} \cdots w_{\gamma_k}wP = BW_\phi w^{-1}w_{\gamma_1} \cdots w_{\gamma_k}wW_\phi B.
\]
So we have only to show
\[
(2.2) \quad w^{-1}w_{\gamma_2} \cdots w_{\gamma_k}w \not\in W_\phi w^{-1}w_{\gamma_1} \cdots w_{\gamma_k}wW_\phi.
\]

Let \(Z \) be an element in \(j \) defining \(P \). This implies that \(Z \) is dominant for \(\Delta^+ \) and that \(\{ \alpha \in \Psi \mid \alpha(Z) = 0 \} = \Theta \). Let \(w_1 \) and \(w_2 \) be elements in \(W_\phi \). Let \(B(\ , \) \) denote the Killing form on \(g \) and let \(Y_{\gamma_1} \) denote the element in \(j \) such that
\[
\gamma_1(Y) = B(Y, Y_{\gamma_1}) \quad \text{for all} \ Y \in j.
\]

Then we have
\[
\begin{align*}
 &B(Z, w^{-1}w_{\gamma_2} \cdots w_{\gamma_k}wZ) - B(Z, w_1w^{-1}w_{\gamma_1}w_{\gamma_2} \cdots w_{\gamma_k}wwZ) \\
 &= B(wZ - w_{\gamma_1}wZ, w_{\gamma_2} \cdots w_{\gamma_k}wZ) \\
 &= \frac{2B(Y_{\gamma_1}, wZ)}{B(Y_{\gamma_1}, Y_{\gamma_1})}B(Y_{\gamma_1}, w_{\gamma_2} \cdots w_{\gamma_k}wZ) \\
 &= \frac{2B(Y_{\gamma_1}, wZ)^2}{B(Y_{\gamma_1}, Y_{\gamma_1})} > 0
\end{align*}
\]

since \(\gamma_1 \not\in w\Delta_\phi \). Thus we have proved (2.2). \(\square \)

Lemma 2.4. Suppose that
\[
i(xK_C) \in G_Rc_\beta Q/Q \times G_Rc_\beta Q/Q
\]
and that \(\gamma_1 \) is a short root of \(\Delta^+_1 \). (We assume that \(g_R \cong \mathfrak{sp}(l, R) \) or \(\mathfrak{so}(2, 2p - 1) \) with \(p \geq 2 \).) Define a \(K_C \)-B double coset \(\bar{S}_1 \) by \(\bar{S}_1 = K_Cc_{\gamma_2} \cdots c_{\gamma_k}wB \) where
\[
g = \begin{cases}
 e & \text{if } \gamma_1 \text{ is the simple short root of } \Delta^+_1, \\
 c_\beta & \text{if } \gamma_1 \text{ is the non-simple short root of } \Delta^+_1.
\end{cases}
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Here $\Delta_1^+ = \Delta_1 \cap w\Delta^+$ and β is the long simple root of Δ_1^+. Then \tilde{S}_1 is contained in $\partial S = S^{cl} - S$ and

$$x\tilde{S}_1 \cap S_0^{cl} \neq \emptyset.$$

Proof. It follows from Lemma 2.1 (ii) and Definition 2.2 that

$$c_{\beta_1}^+, t_1^+ \in L_1 \quad \text{and} \quad t_2^+, \ldots, t_\ell^+ \in L_2.$$

It follows moreover from Definition 2.2 (i) that $L_1 \cong \mathfrak{sp}(2, \mathbb{C})$.

Write $y = t_3 \cdots t_\ell$. Then by the same argument as in the proof of Lemma 2.3 we see that the set $yS_{L_2} \cap S'_{L_2}$ is nonempty and closed in L_2. Take an element z of $yS_{L_2} \cap S'_{L_2}$.

The positive system Δ_1^+ of Δ_1 consists of two long roots and two short roots. Since $\gamma_1 \in \Delta_1^+$, γ_1 is either of these two short roots. Write $x_1 = c_{\beta_1}t_2^+$.

First assume that γ_1 is the simple short root of Δ_1^+. Then it follows from Proposition 3.2 (i) in the next section that

$$x_1(L_1 \cap K_C)(L_1 \cap wBw^{-1}) \cap ((L_1 \cap G_R)c_{\gamma_1}(L_1 \cap wBw^{-1}))^{cl}$$

is nonempty. Note that $L_1 \cap wBw^{-1}$ and γ_1 correspond to $w_{\beta_2}Bw_{\beta_2}^{-1}$ and δ in the next section, respectively. Let z_1 be an element of (2.3). Then we have

$$z_1z \in x_1(L_1 \cap K_C)(L_1 \cap wBw^{-1})yS_{L_2}$$

$$= x_1(L_1 \cap K_C)(L_1 \cap wBw^{-1})y(L_2 \cap K_C)c_{\gamma_2} \cdots c_{\gamma_\ell}(L_2 \cap wBw^{-1})$$

$$= x_1y(L_1 \cap K_C)(L_2 \cap K_C)c_{\gamma_2} \cdots c_{\gamma_\ell}(L_1 \cap wBw^{-1})(L_2 \cap wBw^{-1})$$

$$\subset xK_Cc_{\gamma_2} \cdots c_{\gamma_\ell}wBw^{-1} = x\tilde{S}_1w^{-1}$$

and

$$z_1z \in ((L_1 \cap G_R)c_{\gamma_1}(L_1 \cap wBw^{-1}))^{cl}S'_{L_2}$$

$$= ((L_1 \cap G_R)c_{\gamma_1}(L_1 \cap wBw^{-1}))^{cl}(L_2 \cap G_R)c_{\gamma_2} \cdots c_{\gamma_\ell}(L_2 \cap wBw^{-1})$$

$$\subset (G_Rc_{\gamma_1}c_{\gamma_2} \cdots c_{\gamma_\ell}wBw^{-1})^{cl} = S_0^{cl}w^{-1}.$$

So we have $x\tilde{S}_1 \cap S_0^{cl} \neq \emptyset$. We can prove $\tilde{S}_1 \subset S^{cl} - S$ by the same arguments as in the proof of Lemma 2.3.

Next assume that γ_1 is the non-simple short root of Δ_1^+. Then it follows from Proposition 3.2 (ii) in the next section that

$$x_1(L_1 \cap K_C)c_{\beta}(L_1 \cap wBw^{-1}) \cap ((L_1 \cap G_R)c_{\gamma_1}(L_1 \cap wBw^{-1}))^{cl}$$

is nonempty. Note that $L_1 \cap wBw^{-1}$, γ_1 and β correspond to B, δ and β_2 in the next section, respectively. By the same argument as above we can prove

$$x\tilde{S}_1 \cap S_0^{cl} \neq \emptyset.$$

It follows from Remark 3.3 that $\tilde{S}_1 \subset S^{cl}$. Finally we will prove that $\tilde{S}_1 \not\subset S$. Using the same argument as in the proof of Lemma 2.3, we have only to show

$$w^{-1}w_\beta w_{\gamma_2} \cdots w_{\gamma_\ell}w \not\in W_\beta w^{-1}w_{\gamma_2} \cdots w_{\gamma_\ell}wW_\beta.$$

Let Z and Y_{γ_1} be as in the proof of Lemma 2.3. Define $Y_\beta \in j$ so that

$$\beta(Y) = B(Y, Y_\beta) \quad \text{for all} \ Y \in j.$$
Then we have
\[B(Z, w^{-1}w_{\beta}w_{\gamma_2} \cdots w_{\gamma_k} wZ) - B(Z, w_1 w^{-1}w_{\gamma_1} w_{\gamma_2} \cdots w_{\gamma_k} w_2 wZ) \]
\[= B(w_{\beta} wZ - w_{\gamma_1} wZ, w_{\gamma_2} \cdots w_{\gamma_k} wZ) \]
\[= B(wZ - w_{\gamma_1} wZ, w_{\gamma_2} \cdots w_{\gamma_k} wZ) - B(wZ - w_{\beta} wZ, w_{\gamma_2} \cdots w_{\gamma_k} wZ) \]
\[= \frac{2B(Y_{\gamma_1}, wZ)}{B(Y_{\gamma_1}, Y_{\gamma_1})} B(Y_{\gamma_1}, w_{\gamma_2} \cdots w_{\gamma_k} wZ) - \frac{2B(Y_{\beta}, wZ)}{B(Y_{\beta}, Y_{\beta})} B(Y_{\beta}, w_{\gamma_2} \cdots w_{\gamma_k} wZ) \]
\[= \frac{2B(Y_{\gamma_1}, wZ)^2}{B(Y_{\gamma_1}, Y_{\gamma_1})} - \frac{2B(Y_{\beta}, wZ)^2}{B(Y_{\beta}, Y_{\beta})} > 0 \]
for \(w_1, w_2 \in W_{\Theta} \) since
\[B(Y_{\gamma_1}, wZ) > 0, \quad 0 < B(Y_{\beta}, wZ) \leq B(Y_{\gamma_1}, wZ) \quad \text{and} \quad B(Y_{\beta}, Y_{\beta}) = 2B(Y_{\gamma_1}, Y_{\gamma_1}). \]
Thus we have proved (2.4). \(\square \)

Using the conjugation on \(G_C \) with respect to the real form \(G_R \), the following follows from Lemma 2.3 and Lemma 2.4.

Corollary 2.5. Suppose that
\[\iota(xK_C) \in G_R Q/Q \times G_R \overline{c_{\beta} Q} \overline{Q}/\overline{Q}. \]
Then there exists a \(K_C \)-B double coset \(\tilde{S}_2 \) contained in \(\partial S \) such that
\[x\tilde{S}_2 \cap S_0^{cl} \neq \phi. \]

Proof of Theorem 1.3. Let \(S \) be a non-closed \(K_C \)-\(P \) double coset in \(G_C \). Then it follows from Lemma 2.3, Lemma 2.4 and Corollary 2.5 that there exist \(K_C \)-B double cosets \(\tilde{S}_1 \) and \(\tilde{S}_2 \) contained in \(\partial S \) such that
\[x(\tilde{S}_1 \cup \tilde{S}_2) \cap S_0^{cl} \neq \phi \]
for all \(x \in \partial D \) satisfying
\[xK_C \in \iota^{-1}((G_R c_{\beta} Q/Q \times G_R \overline{Q} \overline{Q}) \cup (G_R Q/Q \times G_R \overline{c_{\beta} Q} \overline{Q} \overline{Q})). \]
Suppose that
\[y(\tilde{S}_1 \cup \tilde{S}_2)^{cl} \cap S_0^{cl} = \phi \]
for some \(y \in \partial D \). Then there exists a neighborhood \(U \) of \(y \) in \(G_C \) such that
\[x(\tilde{S}_1 \cup \tilde{S}_2)^{cl} \cap S_0^{cl} = \phi \]
for all \(x \in U \). But this contradicts (2.5) because the right hand side of (2.6) is dense in \(\partial(D/K_C) \). \(\square \)

3. \(Sp(2, \mathbb{R}) \)-case

Let \(G_C = Sp(2, \mathbb{C}) = \{ g \in GL(4, \mathbb{C}) | \iota' g J g = J \} \) where
\[J = \begin{pmatrix} 0 & -I_2 \\ I_2 & 0 \end{pmatrix}. \]
Let
\[K_C = \left\{ \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \middle| g \in GL(2, \mathbb{C}) \right\} \quad \text{and} \quad G_R = G_C \cap U(2, 2) \cong Sp(2, \mathbb{R}). \]
Put $U_+ = C_{e_1} \oplus C_{e_2}$ and $U_- = C_{e_3} \oplus C_{e_4}$ by using the canonical basis $\{e_1, e_2, e_3, e_4\}$ of C^4. Then we have

$$K_C = Q \cap \overline{Q}$$

where $Q = \{g \in G_C \mid gU_+ = U_+\}$ and $\overline{Q} = \{g \in G_C \mid gU_- = U_-\}$.

The full flag manifold X of G_C consists of the flags (V_1, V_2) in C^4 where dim $V_j = j$, $V_1 \subset V_2$ and $\langle uJv \rangle = 0$ for all $u, v \in V_2$. Let B denote the Borel subgroup of G_C defined by

$$B = \{g \in G_C \mid gC e_1 = C e_1 \text{ and } gU_+ = U_+\}.$$

Then the full flag manifold X is identified with G_C/B by the map

$$gB \mapsto (V_1, V_2) = (gC e_1, gU_+).$$

There are eleven K_C-orbits

$$S_1 = \{(V_1, V_2) \mid V_2 = U_+\},$$
$$S_2 = \{(V_1, V_2) \mid V_2 = U_-\},$$
$$S_3 = \{(V_1, V_2) \mid V_1 \subset U_+, \text{ dim}(V_2 \cap U_-) = 1\},$$
$$S_4 = \{(V_1, V_2) \mid V_1 \subset U_-, \text{ dim}(V_2 \cap U_+) = 1\},$$
$$S_5 = \{(V_1, V_2) \mid V_1 \subset U_+ \} - (S_1 \cup S_3),$$
$$S_6 = \{(V_1, V_2) \mid V_1 \subset U_- \} - (S_2 \cup S_4),$$
$$S_7 = \{(V_1, V_2) \mid \text{dim}(V_2 \cap U_+) = \text{dim}(V_2 \cap U_-) = 1\} - (S_3 \cup S_4),$$
$$S_8 = \{(V_1, V_2) \mid V_i \subset U_+ = \{0\}, \text{dim}(V_2 \cap U_-) = 1, V_2 \cap U_+ = \{0\}\},$$
$$S_9 = \{(V_1, V_2) \mid V_i \subset U_- = \{0\}, \text{dim}(V_2 \cap U_-) = 1, V_2 \cap U_+ = \{0\}\},$$
$$S_{10} = \{(V_1, V_2) \mid V_2 \cap U_+ = \{0\}, \langle uJv \rangle = 0 \text{ for } v \in V_1\},$$
$$S_{op} = \{(V_1, V_2) \mid V_2 \cap U_+ = \{0\}, \langle uJv \rangle \neq 0 \text{ for } v \in V_1 \}$$

on X where

$$\tau(v) = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix} v$$

for $v \in C^4$. These orbits are related as follows (MO, Fig. 12):
Let P_1 and P_2 be the parabolic subgroups of G_C defined by

$$P_1 = Q \quad \text{and} \quad P_2 = \{ g \in G_C \mid gC e_1 = C e_1 \},$$

respectively. Then the above diagram implies, for example, that

$$S_1 P_2 = S_3 P_2 \quad \text{and that} \quad \dim S_1 = \dim S_5 - 1$$

by the arrow attached with the number 2 joining S_1 and S_5.

On the other hand define subsets

$$C_+ = \{ z \in C^4 \mid (z, z) > 0 \}, \quad C_- = \{ z \in C^4 \mid (z, z) < 0 \}$$

and $C_0 = \{ z \in C^4 \mid (z, z) = 0 \}$ of C^4 using the Hermitian form $(w, z) = \overline{w_1 z_1} + \overline{w_2 z_2} - \overline{w_3 z_3} - \overline{w_4 z_4}$ defining $U(2, 2)$. For $v \in C^4$ define subspaces

$$v' = \{ u \in C^4 \mid (vJu) = 0 \} \quad \text{and} \quad v^\perp = \{ u \in C^4 \mid (v, u) = 0 \}$$

of C^4. Then C_0 is devided as $C_0 = C_0^s \sqcup C_0^r$ where

$$C_0^s = \{ v \in C_0 \mid v' = v^\perp \} \quad \text{and} \quad C_0^r = \{ v \in C_0 \mid v' \neq v^\perp \}.$$

The G_R-orbits on X are

$$S_1' = \{(V_1, V_2) \mid V_2 - \{0\} \subset C_+\},$$

$$S_2' = \{(V_1, V_2) \mid V_2 - \{0\} \subset C_-\},$$

$$S_3' = \{(V_1, V_2) \mid V_1 - \{0\} \subset C_+, \ V_2 \cap C_\neq \phi\},$$

$$S_4' = \{(V_1, V_2) \mid V_1 - \{0\} \subset C_-, \ V_2 \cap C_\neq \phi\},$$

$$S_5' = \{(V_1, V_2) \mid V_1 - \{0\} \subset C_+, \ V_2 \cap C_0^s \neq \{0\}\},$$

$$S_6' = \{(V_1, V_2) \mid V_1 - \{0\} \subset C_-, \ V_2 \cap C_0^s \neq \{0\}\},$$

$$S_7' = \{(V_1, V_2) \mid V_1 - \{0\} \subset C_0^r, \ V_2 \not\subset C_0\},$$

$$S_8' = \{(V_1, V_2) \mid V_1 \subset C_0^s, \ V_2 \cap C_\neq \phi\},$$

$$S_9' = \{(V_1, V_2) \mid V_1 \subset C_0^s, \ V_2 \cap C_- \neq \phi\},$$

$$S_{10}' = \{(V_1, V_2) \mid V_1 - \{0\} \subset C_0^r, \ V_2 \subset C_0\},$$

$$S_{10}'_{{\text{op}}} = \{(V_1, V_2) \mid V_1 \subset C_0^r, \ V_2 \subset C_0\}.$$

Here the K_C-orbit S_j and the G_R-orbit S'_j correspond by the duality for each $j = 1, \ldots, 10, \text{op}$.

Take a maximal abelian subspace

$$j = \left\{ Y(a_1, a_2) = \begin{pmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & -a_1 & 0 \\ 0 & 0 & 0 & -a_2 \end{pmatrix} \bigg| a_1, a_2 \in \mathbb{R} \right\}$$

of im. Using the linear forms $e_j : Y(a_1, a_2) \mapsto a_j$ for $j = 1, 2$, we can write

$$\Delta = \{ \pm 2 e_1, \pm 2 e_2, \pm e_1 \pm e_2 \} \quad \text{and} \quad \Delta^+_n = \{ 2 e_1, 2 e_2, e_1 + e_2 \}.$$

Write $\beta_1 = 2 e_1$, $\beta_2 = 2 e_2$ and $\delta = e_1 + e_2$. Take root vectors $X_1 = -E_{13}$ of $g_C(j, \beta_1)$ and $X_2 = -E_{24}$ of $g_C(j, \beta_2)$ where E_{ij} $(i, j = 1, \ldots, 4)$ denotes the matrix units.
Define
\[
t_1(s) = \exp s(X_1 - X_1) = \exp s(E_{31} - E_{13}) = \begin{pmatrix}
\cos s & 0 & -\sin s & 0 \\
0 & 1 & 0 & 0 \\
\sin s & 0 & \cos s & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
and
\[
t_2(s) = \exp s(X_2 - X_2) = \exp s(E_{42} - E_{24}) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos s & 0 & -\sin s \\
0 & 0 & 1 & 0 \\
0 & \sin s & 0 & \cos s
\end{pmatrix}
\]
for \(s \in \mathbb{R} \). Then we can write the Akhiezer-Gindikin domain \(D \) as
\[
D = G_{\mathbb{R}} T^+ K_C
\]
where \(T^+ = \{ t_1(s_1)t_2(s_2) \mid |s_1| < \pi/4, |s_2| < \pi/4 \} \). Write \(c_{\beta_j} = t_j(\pi/4) \) and \(w_{\beta_j} = t_j(\pi/2) \) for \(j = 1, 2 \). Then we can write
\[
S_j = K_C g_{\mathbb{R}} B \quad \text{and} \quad S'_j = G_{\mathbb{R}} g_B
\]
for \(j = 1, \ldots, 10, \text{op} \) with the following representatives \(g \) ([Mi], Theorem 2):

<table>
<thead>
<tr>
<th>(j)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(\text{op})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td>(e)</td>
<td>(w_{\beta_1}w_{\beta_2})</td>
<td>(w_{\beta_1})</td>
<td>(c_{\beta_2})</td>
<td>(c_{\beta_2}w_{\beta_1})</td>
<td>(c_{\delta}w_{\beta_2})</td>
<td>(c_{\beta_1})</td>
<td>(c_{\beta_1}w_{\beta_2})</td>
<td>(c_{\delta})</td>
<td>(c_{\beta_1}c_{\beta_2})</td>
<td></td>
</tr>
</tbody>
</table>

Here
\[
c_{\delta} = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{pmatrix} = \exp \frac{\pi}{4} (X_\delta - X_\delta)
\]
with \(X_\delta = -(E_{14} + E_{23}) \in g_C(1, \delta) \).

The standard maximal flag manifold \(G_C/Q \) is identified with the space \(Y \) of two dimensional subspaces \(V_+ \) of \(\mathbb{C}^4 \) such that \(\imath u^* v = 0 \) for all \(u, v \in V_+ \) by the map
\[
G_C/Q \ni gQ \mapsto V_+ = gU_+ \in Y.
\]
Similarly we also identify \(G_C/\bar{Q} \) with \(Y \) by the map
\[
G_C/\bar{Q} \ni g\bar{Q} \mapsto V_- = gU_- \in Y.
\]
As in Section 2 the complex symmetric space \(G_C/K_C \) is naturally identified with the open subset
\[
\{(V_+, V_-) \in G_C/Q \times G_C/\bar{Q} \mid V_+ \cap V_- = \{0\}\}
\]
of \(G_C/Q \times G_C/\bar{Q} \cong Y \times \bar{Y} \) by the map
\[
\imath : gK_C \ni (V_+, V_-) = (gU_+, gU_-).
\]
Then the Akhiezer-Gindikin domain \(D/K_C \) is identified with
\[
G_{\mathbb{R}} Q/Q \times G_{\mathbb{R}} \bar{Q}/\bar{Q} = \{(V_+, V_-) \in Y \times \bar{Y} \mid V_+ - \{0\} \subset C_+ \text{ and } V_- - \{0\} \subset C_-\}.
\]
Let \(xK_C \) be an element of \(\partial(D/K_C) \) such that \(\imath(xK_C) \in G_{\mathbb{R}} c_{\beta_1} Q/Q \times G_{\mathbb{R}} \bar{Q}/\bar{Q} \). Then it follows from Lemma 2.3 that
\[
xK_C gB \cap G_{\mathbb{R}} c_{\beta_1} gB \neq \phi
\]
for \(g = e, w_{\beta_2} \) and \(c_{\beta_2} \). This implies that

\[
\begin{align*}
(3.1) & \quad xS_1 \cap S'_8 \neq \phi, \\
(3.2) & \quad xS_3 \cap S'_9 \neq \phi
\end{align*}
\]

and that

\[
(3.3) \quad xS_5 \cap S'_{op} \neq \phi.
\]

Since \(S'_7^{cl} = \{(V_1, V_2) \mid V_1 \subset C_0 \} \supset S'_9 \), it follows from (3.2) that

\[
(3.4) \quad xS_3 \cap S'_7^{cl} \neq \phi.
\]

On the other hand, since \(S'_1^{cl} \supset S'_9^{op} \), it follows from (3.3) that

\[
(3.5) \quad xS_5 \cap S'_1^{cl} \neq \phi.
\]

Remark 3.1. (i) If \(\iota(xK_C) \in G_{\mathbb{R}}Q/Q \times G_{\mathbb{R}}c_{\beta_2}Q/Q \), then we can prove

\[
\begin{align*}
xS_2 \cap S'_9 \neq \phi, & \quad xS_4 \cap S'_8 \neq \phi, & \quad xS_6 \cap S'_{op} \neq \phi, \\
xS_4 \cap S'_7^{cl} \neq \phi \quad \text{and} \quad xS_6 \cap S'_1^{cl} \neq \phi
\end{align*}
\]

in the same way.

(ii) If we apply [M4], Theorem 1.3, to this case, then we have

\[
x \in \partial D \Rightarrow x(S_5 \sqcup S_6)^{cl} \cap S'_{op} \neq \phi.
\]

So we see that the results in this paper are refinements of this theorem for Hermitian cases.

By (3.4) and (3.5) we proved the following.

Proposition 3.2. If \(\iota(xK_C) \in G_{\mathbb{R}}c_{\beta_1}Q/Q \times G_{\mathbb{R}}c_{\beta_2}Q/Q \), then we have:

(i) \(xK_Cw_{\beta_2}B \cap (G_{\mathbb{R}}c_{\beta_2}B)^{cl} \neq \phi \).

(ii) \(xK_Cc_{\beta_2}B \cap (G_{\mathbb{R}}c_{\beta_2}B)^{cl} \neq \phi \).

Remark 3.3. It is clear that \(K_Cw_{\beta_2}B = S_3 \subset S'_7^{cl} = (K_Cc_{\beta_2}B)^{cl} \) and that \(K_Cc_{\beta_2}B = S_5 \subset S'_1^{cl} = (K_Cc_{\beta_4}B)^{cl} \).

Acknowledgement

The author would like to express his hearty thanks to S. Gindikin for valuable suggestions and encouragements.

References

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: matsuki@math.kyoto-u.ac.jp