Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Homological integral of Hopf algebras

Authors: D.-M. Lu, Q.-S. Wu and J. J. Zhang
Journal: Trans. Amer. Math. Soc. 359 (2007), 4945-4975
MSC (2000): Primary 16A62, 16W30; Secondary 16E70, 20J50
Published electronically: May 16, 2007
MathSciNet review: 2320655
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The left and right homological integrals are introduced for a large class of infinite dimensional Hopf algebras. Using the homological integrals we prove a version of Maschke's theorem for infinite dimensional Hopf algebras. The generalization of Maschke's theorem and homological integrals are the keys to studying noetherian regular Hopf algebras of Gelfand-Kirillov dimension one.

References [Enhancements On Off] (What's this?)

  • [ASZ] K. Ajitabh, S.P. Smith and J.J. Zhang, Auslander-Gorenstein rings, Comm. Algebra 26 (1998), no. 7, 2159-2180. MR 1626582 (99g:16010)
  • [Be] D.J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, 190. Cambridge University Press, Cambridge, 1993. MR 1249931 (94j:13003)
  • [Bra] A. Braun, An additivity principle for p.i. rings. J. Algebra 96 (1985), no. 2, 433-441. MR 0810539 (87f:16011)
  • [BW] A. Braun and R.B. Warfield Jr., Symmetry and localization in Noetherian prime PI rings. J. Algebra 118 (1988), no. 2, 322-335. MR 0969675 (89k:16031)
  • [Bro] K. A. Brown, Representation theory of Noetherian Hopf algebras satisfying a polynomial identity, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), 49-79, Contemp. Math., 229, AMS, Providence, RI, 1998. MR 1676211 (99m:16056)
  • [BG] K. A. Brown and K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras of irreducible modules and maximal dimension, J. Algebra 198 (1997), 240-265. MR 1482982 (99c:16036)
  • [Co] P.M. Cohn, Algebra. Vol. 2. With errata to Vol. I. John Wiley & Sons, London-New York-Sydney, 1977. MR 0530404 (58:26625)
  • [GW] K.R. Goodearl and R.B. Warfield Jr., ``An introduction to noncommutative Noetherian rings'', Second edition. London Mathematical Society Student Texts, 61. Cambridge University Press, Cambridge, 2004. MR 2080008 (2005b:16001)
  • [GP] C. Greither and B. Pareigis, Hopf Galois theory for separable field extensions, J. Algebra 106 (1987), no. 1, 239-258. MR 0878476 (88i:12006)
  • [IS] W. Imrich and N. Seifter, A bound for groups of linear growth, Arch. Math. (Basel) 48 (1987), no. 2, 100-104. MR 0878419 (88e:20035)
  • [LR1] R.G. Larson and D.E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), no. 2, 267-289. MR 0957441 (89k:16016)
  • [LR2] R.G. Larson and D.E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 110 (1988), no. 1, 187-195. MR 0926744 (89a:16011)
  • [LS] R.G. Larson and M. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969) 75-94. MR 0240169 (39:1523)
  • [Liu] G.-X. Liu, On Noetherian affine prime regular Hopf algebras of Gelfand-Kirillov dimension $ 1$, Proc. Amer. Math. Soc. (to appear).
  • [LL] M.E. Lorenz and M. Lorenz, On crossed products of Hopf algebras, Proc. Amer. Math. Soc. 123 (1995), no. 1, 33-38. MR 1227522 (95c:16014)
  • [MR] J. C. McConnell and J. C . Robson, ``Noncommutative Noetherian Rings,'' Wiley, Chichester, 1987. MR 0934572 (89j:16023)
  • [Mo] S. Montgomery, ``Hopf algebras and their actions on rings'', CBMS Regional Conference Series in Mathematics, 82, Providence, RI, 1993. MR 1243637 (94i:16019)
  • [Par] B. Pareigis, Forms of Hopf algebras and Galois theory, Topics in algebra, Part 1 (Warsaw, 1988), 75-93, Banach Center Publ., 26, Part 1, PWN, Warsaw, 1990 MR 1171227 (93f:16038)
  • [Pas] D.S. Passman, The algebraic structure of group rings, Reprint of the 1977 original. Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. MR 0798076 (86j:16001)
  • [Ro] J.J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, 85. Academic Press, Inc. New York-London, 1979. MR 0538169 (80k:18001)
  • [Sc] H.-J. Schneider, Some remarks on exact sequences of quantum groups. Comm. Algebra 21 (1993), no. 9, 3337-3357. MR 1228767 (94e:17026)
  • [SSW] L. W. Small, J.T. Stafford and R. B. Warfield Jr., Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 407-414. MR 0778674 (86g:16025)
  • [Sp] T.A. Springer, Linear algebraic groups, 2nd edition. Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713 (99h:20075)
  • [St] J. Stallings, Group theory and three-dimensional manifolds, Yale University Press, New Haven, Conn.-London, 1971. MR 0415622 (54:3705)
  • [SZ] J. T. Stafford and J. J. Zhang, Homological properties of (graded) Noetherian PI rings, J. Algebra 168 (1994), no. 3, 988-1026. MR 1293638 (95h:16030)
  • [Ta] E.J. Taft, The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631-2633. MR 0286868 (44:4075)
  • [WV] A.J. Wilkie and L. van den Dries, An effective bound for groups of linear growth, Arch. Math. (Basel) 42 (1984), no. 5, 391-396. MR 0756689 (85k:20107)
  • [WZ1] Q.-S. Wu and J.J. Zhang, Noetherian PI Hopf algebras are Gorenstein, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1043-1066. MR 1938745 (2003m:16056)
  • [WZ2] Q.-S. Wu and J.J. Zhang, Regularity of Involutory PI Hopf Algebras, J. Algebra 256 (2002), no. 2, 599-610. MR 1939124 (2004g:16042)
  • [WZ3] Q.-S. Wu and J.J. Zhang, Homological identities for noncommutative rings, J. Algebra, 242 (2001), 516-535. MR 1848957 (2002k:16011)
  • [YZ] A. Yekutieli and J.J. Zhang, Residual complex over noncommutative rings, J. Algebra 259 (2003), no. 2, 451-493. MR 1955528 (2004a:16010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16A62, 16W30, 16E70, 20J50

Retrieve articles in all journals with MSC (2000): 16A62, 16W30, 16E70, 20J50

Additional Information

D.-M. Lu
Affiliation: Department of Mathematics, Zhejiang University, Hangzhou 310027, People’s Republic of China

Q.-S. Wu
Affiliation: Institute of Mathematics, Fudan University, Shanghai, 200433, People’s Republic of China

J. J. Zhang
Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195

Keywords: Hopf algebra, homological integral, Gorenstein property, regularity, Gelfand-Kirillov dimension, integral order, integral quotient, PI degree
Received by editor(s): May 16, 2005
Received by editor(s) in revised form: July 11, 2005
Published electronically: May 16, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society