Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Morse decompositions of nonautonomous dynamical systems


Author: Martin Rasmussen
Journal: Trans. Amer. Math. Soc. 359 (2007), 5091-5115
MSC (2000): Primary 34D05, 37B25, 37B55, 37C70; Secondary 34D08
DOI: https://doi.org/10.1090/S0002-9947-07-04318-8
Published electronically: April 24, 2007
MathSciNet review: 2320661
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The global asymptotic behavior of dynamical systems on compact metric spaces can be described via Morse decompositions. Their components, the so-called Morse sets, are obtained as intersections of attractors and repellers of the system. In this paper, new notions of attractor and repeller for nonautonomous dynamical systems are introduced which are designed to establish nonautonomous generalizations of the Morse decomposition. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapunov functions which are constant on the Morse sets are constructed explicitly. Moreover, Morse decompositions of one-dimensional and linear systems are studied.


References [Enhancements On Off] (What's this?)

  • 1. E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics, no. 1, American Mathematical Society, Providence, Rhode Island, 1993. MR 1219737 (94f:58041)
  • 2. L. Arnold, Random Dynamical Systems, Springer, Berlin, Heidelberg, New York, 1998. MR 1723992 (2000m:37087)
  • 3. L. Arnold and B. Schmalfuß, Lyapunov's Second Method for Random Dynamical Systems, Journal of Differential Equations 177 (2001), no. 1, 235-265. MR 1867618 (2002h:37093)
  • 4. C. J. Braga Barros and L. A. B. San Martin, Chain Transitive Sets for Flows on Flag Bundles, to appear in: Forum Mathematicum.
  • 5. F. Colonius and W. Kliemann, The Morse Spectrum of Linear Flows on Vector Bundles, Transactions of the American Mathematical Society 348 (1996), no. 11, 4355-4388. MR 1329532 (97a:58158)
  • 6. F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser, 2000. MR 1752730 (2001e:93001)
  • 7. F. Colonius and W. Kliemann, Morse Decompositions and Spectra on Flag Bundles, Journal of Dynamics and Differential Equations 14 (2002), no. 4, 719-741. MR 1940100 (2004j:37026)
  • 8. C. C. Conley, Isolated Invariant Sets and the Morse Index, Regional Conference Series in Mathematics, no. 38, American Mathematical Society, Providence, Rhode Island, 1978. MR 511133 (80c:58009)
  • 9. H. Crauel, L. H. Duc, and S. Siegmund, Towards a Morse Theory for Random Dynamical Systems, Stochastics and Dynamics 4 (2004), no. 3, 277-296. MR 2086941 (2005f:37110)
  • 10. F. Flandoli and B. Schmalfuß, Random Attractors for the $ 3$-D Stochastic Navier-Stokes Equation with Mulitiplicative White Noise, Stochastics and Stochastics Reports 59 (1996), no. 1-2, 21-45. MR 1427258 (98g:60113)
  • 11. J. Franks, A Variation on the Poincaré-Birkhoff Theorem, Hamiltonian Dynamical Systems, Contemporary Mathematics, vol. 81, 1988, pp. 111-117. MR 986260 (90e:58095)
  • 12. P. E. Kloeden, Lyapunov Functions for Cocycle Attractors in Nonautonomous Difference Equations, Izvetsiya Akad Nauk Repub. Moldovia Mathematika 26 (1998), 32-42. MR 1659222 (99k:58109)
  • 13. -, A Lyapunov Function for Pullback Attractors of Nonautonomous Differential Equations, Conference 05, Electronic Journal of Differential Equations, 2000, pp. 91-102. MR 1799047 (2001k:37020)
  • 14. P. E. Kloeden, H. Keller, and B. Schmalfuß, Towards a Theory of Random Numerical Dynamics, Stochastic Dynamics (H. Crauel and M. Gundlach, eds.), Springer, Berlin, Heidelberg, New York, 1999. MR 1678487 (2000d:37064)
  • 15. D. E. Norton, The Fundamental Theorem of Dynamical Systems, Commentationes Mathematicae Universitatis Carolinae 36 (1995), 585-597. MR 1364499 (97a:58110)
  • 16. G. Ochs, Weak Random Attractors, Report Nr. 449, Institut für Dynamische Systeme, Universität Bremen, 1999.
  • 17. C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics and Chaos, 2nd ed., CRC Press, Boca Raton, 1999. MR 1792240 (2001k:37003)
  • 18. K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer, Berlin, Heidelberg, New York, 1987. MR 910097 (89d:58025)
  • 19. D. Salamon and E. Zehnder, Flows on Vector Bundles and Hyperbolic Sets, Transactions of the American Mathematical Society 306 (1988), no. 2, 623-649. MR 933310 (89f:58112)
  • 20. J. F. Selgrade, Isolated Invariant Sets for Flows on Vector Bundles, Transactions of the American Mathematical Society 203 (1975), 359-390. MR 0368080 (51:4322)
  • 21. G. R. Sell, Nonautonomous Differential Equations and Dynamical Systems. I. The Basic Theory, Transactions of the American Mathematical Society 127 (1967), 241-262. MR 0212313 (35:3187a)
  • 22. -, Nonautonomous Differential Equations and Dynamical Systems. II. Limiting Equations, Transactions of the American Mathematical Society 127 (1967), 263-283. MR 0212314 (35:3187b)
  • 23. -, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Mathematical Studies, London, 1971. MR 0442908 (56:1283)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34D05, 37B25, 37B55, 37C70, 34D08

Retrieve articles in all journals with MSC (2000): 34D05, 37B25, 37B55, 37C70, 34D08


Additional Information

Martin Rasmussen
Affiliation: Department of Mathematics, University of Augsburg, D-86135 Augsburg, Germany
Email: martin.rasmussen@math.uni-augsburg.de

DOI: https://doi.org/10.1090/S0002-9947-07-04318-8
Keywords: Attractor, attractor-repeller pair, Lyapunov function, Morse decomposition, Morse set, nonautonomous dynamical system, repeller
Received by editor(s): August 2, 2005
Received by editor(s) in revised form: December 1, 2005
Published electronically: April 24, 2007
Additional Notes: This research was supported by the “Graduiertenkolleg: Nichtlineare Probleme in Analysis, Geometrie und Physik” (GK 283) financed by the DFG and the State of Bavaria
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society