Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A priori estimates for second order operators with symplectic characteristic manifold


Authors: Lidia Maniccia and Marco Mughetti
Journal: Trans. Amer. Math. Soc. 359 (2007), 5193-5206
MSC (2000): Primary 35B45; Secondary 35S05
DOI: https://doi.org/10.1090/S0002-9947-07-04181-5
Published electronically: June 22, 2007
MathSciNet review: 2327027
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove Fefferman's SAK Principle for a class of classical pseudodifferential operators on $ \mathbb{R}^n$ with symplectic characteristic manifold.


References [Enhancements On Off] (What's this?)

  • 1. R.Beals, C.L.Fefferman: On local solvability of linear partial differential equations. Ann. of Math., 97, 482-498 (1974). MR 0352746 (50:5233)
  • 2. L.Boutet de Monvel, A.Grigis and B.Helffer: Paramétrixes d'opérateurs pseudo-différentiels à caractéristiques multiples. Astérisque, 34-35, 93-121 (1976). MR 0493005 (58:12046)
  • 3. C.L.Fefferman, D.H.Phong: On positivity of pseudo-differential operators. Proc. Nat. Acad. Sci., 75, 4673-4674 (1978).MR 0507931 (80b:47064)
  • 4. C.L.Fefferman: The Uncertainty Principle. Bull. A.M.S., 9, 129-206 (1983).MR 0707957 (85f:35001)
  • 5. D.Fujiwara: A construction of approximate positive parts of essentially selfadjoint pseudo-differential operators. Commun. Pure Appl. Math., 37, 101-147 (1984).MR 0728268 (85i:47051)
  • 6. F.Hérau: Fefferman's SAK principle in one dimension. Ann. Inst. Fourier, 50 (4), 1229-1264 (2000). MR 1799744 (2001k:35310)
  • 7. L.Hörmander: The Cauchy problem for differential equations with double characteristics. J. d'Analyse Mathématique, 32, 118-196, (1977).MR 0492751 (58:11822)
  • 8. L.Hörmander: The Analysis of Linear Partial Differential Operators, Vol. III and Vol. IV. Springer-Verlag (1983/85).MR 0781536 (87d:35002a); MR 0781537 (87d:35002b)
  • 9. R.Lascar: Propagation des singularites et hypoellipticite pour des operateurs pseudo-differentiels a caracteristiques doubles. Comm. in Partial Differential Equations, 3 (3), 201-247 (1978). MR 0492798 (58:11863)
  • 10. N.Lerner, J.Nourrigat: Lower bounds for pseudo-differential operators. Ann. Inst. Fourier, 40 (3), 657-682 (1990).MR 1091836 (92a:35172)
  • 11. L.Maniccia, M.Mughetti: SAK principle for a class of Grushin-type operators. Revista Matematicá Iberoamericana, 22 (1), 259-286 (2006). MR 2268119
  • 12. L.Maniccia, M.Mughetti: Fefferman's SAK principle and a priori estimates for second order operators. Ann. Univ. Ferrara Sez. VII Sci. Mat., 52, 337-352 (2007). MR 2273103
  • 13. S.Mustapha: Sous ellipticité dans le cadre du calcul $ S(m,g)$. Comm. Partial Differential Equations 19 (1-2), 245-275 (1994). MR 1257005 (95c:35279)
  • 14. S.Mustapha: Sous-ellipticité dans le cadre du calcul $ S(m,g)$. II. Comm. Partial Differential Equations 20 (3-4), 541-566 (1995).MR 1318080 (96a:35225)
  • 15. A.Parmeggiani: A Class of counterexamples to the Fefferman-Phong Inequality for systems. Comm. in Partial Differential Equations, 29 (9,10), 1281-1303 (2004).MR 2103837 (2005h:35385)
  • 16. A.Parmeggiani: Subunit balls for symbols of pseudodifferential operators. Adv. Math., 131(2), 357-452 (1997). MR 1483973 (99c:35270)
  • 17. D.Tataru: On the Fefferman-Phong inequality and related problems. Comm. in Partial Differential Equations, 27 (11,12), 2101-2138 (2002).MR 1944027 (2003m:35259)
  • 18. F.Treves: Introduction to Pseudodifferential and Fourier Integral Operators, Vol. II. Plenum Press (1980). MR 0597145 (82i:58068)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35B45, 35S05

Retrieve articles in all journals with MSC (2000): 35B45, 35S05


Additional Information

Lidia Maniccia
Affiliation: Department of Mathematics, University of Bologna, Piazza di Porta S.Donato 5, 40127 Bologna, Italy
Email: maniccia@dm.unibo.it

Marco Mughetti
Affiliation: Department of Mathematics, University of Bologna, Piazza di Porta S.Donato 5, 40127 Bologna, Italy
Email: mughetti@dm.unibo.it

DOI: https://doi.org/10.1090/S0002-9947-07-04181-5
Received by editor(s): May 24, 2005
Published electronically: June 22, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society