Combinatorial congruences modulo prime powers

Authors:
Zhi-Wei Sun and Donald M. Davis

Journal:
Trans. Amer. Math. Soc. **359** (2007), 5525-5553

MSC (2000):
Primary 11B65; Secondary 05A10, 11A07, 11B68, 11S05

DOI:
https://doi.org/10.1090/S0002-9947-07-04236-5

Published electronically:
May 1, 2007

MathSciNet review:
2327041

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be any prime, and let and be nonnegative integers. Let and . We establish the congruence

**[B]**D. F. Bailey,*Two variations of Lucas' theorem*, J. Number Theory**35**(1990), 208-215. MR**1057323 (91f:11008)****[C]**P. Colmez,*Une correspondance de Langlands locale -adique pour les représentations semi-stables de dimension*2, preprint, 2004.**[DS]**D. M. Davis and Z. W. Sun,*A number-theoretic approach to homotopy exponents of*SU, J. Pure Appl. Algebra**209**(2007), 57-69.**[D]**L. E. Dickson,*History of the Theory of Numbers,*Vol. I, AMS Chelsea Publ., 1999.**[GKP]**R. L. Graham, D. E. Knuth and O. Patashnik,*Concrete Mathematics*, 2nd ed., Addison-Wesley, New York, 1994. MR**1397498 (97d:68003)****[G]**A. Granville,*Arithmetic properties of binomial coefficients.I. Binomial coefficients modulo prime powers,*in: Organic Mathematics (Burnaby, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997. MR**1483922 (99h:11016)****[IR]**K. Ireland and M. Rosen,*A Classical Introduction to Modern Number Theory*(Graduate Texts in Math.; 84), 2nd ed., Springer, New York, 1990. MR**1070716 (92e:11001)****[LW]**J.H. van Lint and R. M. Wilson,*A Course in Combinatorics*, 2nd ed., Cambridge Univ. Press, Cambridge, 2001. MR**1871828 (2002i:05001)****[S02]**Z. W. Sun,*On the sum and related congruences*, Israel J. Math.**128**(2002), 135-156. MR**1910378 (2003d:11026)****[S03]**Z. W. Sun,*General congruences for Bernoulli polynomials*, Discrete Math.**262**(2003), 253-276. MR**1951393 (2003m:11037)****[S06]**Z. W. Sun,*Polynomial extension of Fleck's congruence*, Acta Arith.**122**(2006), 91-100. MR**2217327 (2007d:11019)****[W]**D. Wan,*Combinatorial congruences and -operators*, Finite Fields Appl.**12**(2006), 693-703. MR**2257090****[We]**C. S. Weisman,*Some congruences for binomial coefficients*, Michigan Math. J.**24**(1977), 141-151. MR**0463093 (57:3055)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
11B65,
05A10,
11A07,
11B68,
11S05

Retrieve articles in all journals with MSC (2000): 11B65, 05A10, 11A07, 11B68, 11S05

Additional Information

**Zhi-Wei Sun**

Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

Email:
zwsun@nju.edu.cn

**Donald M. Davis**

Affiliation:
Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015

Email:
dmd1@lehigh.edu

DOI:
https://doi.org/10.1090/S0002-9947-07-04236-5

Received by editor(s):
September 6, 2005

Received by editor(s) in revised form:
November 26, 2005

Published electronically:
May 1, 2007

Additional Notes:
The first author is responsible for communications, and partially supported by the National Science Fund for Distinguished Young Scholars (Grant No. 10425103) in People’s Republic of China.

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.