Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Green's formulas for cone differential operators

Author: Ingo Witt
Journal: Trans. Amer. Math. Soc. 359 (2007), 5669-5696
MSC (2000): Primary 35J70; Secondary 34B05, 41A58
Published electronically: June 25, 2007
MathSciNet review: 2336302
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Green's formulas for elliptic cone differential operators are established. This is achieved by an accurate description of the maximal domain of an elliptic cone differential operator and its formal adjoint; thereby utilizing the concept of a discrete asymptotic type. From this description, the singular coefficients replacing the boundary traces in classical Green's formulas are deduced.

References [Enhancements On Off] (What's this?)

  • 1. E.A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 0069338 (16:1022b)
  • 2. S. Coriasco, E. Schrohe, and J. Seiler, Differential operators on conic manifolds: Maximal regularity and parabolic equations, Bull. Soc. Roy. Sc. Liege 70 (2001), 207-229. MR 1904055 (2003j:58039)
  • 3. J.B. Gil, T. Krainer, and G.A. Mendoza, Geometry and spectra of closed extensions of elliptic cone operators, to appear in Canadian J. Math.
  • 4. J.B. Gil and G.A. Mendoza, Adjoints of elliptic cone operators, Amer. J. Math. 125 (2003), 357-408. MR 1963689 (2004h:58032)
  • 5. I.C. Gohberg and E.I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Rouché, Math. USSR Sbornik 13 (1971), 603-625.MR 0313856 (47:2409)
  • 6. P. Grisvard, Elliptic problems in nonsmooth domains, Monogr. Stud. Math., vol. 24, Pitman, Boston, 1985.MR 0775683 (86m:35044)
  • 7. M.V. Keldysh, On the eigenvalues and eigenfunctions of certain classes of non-selfadjoint linear operators, Dokl. Akad. Nauk SSSR 77 (1951), 11-14, In Russian.
  • 8. V.A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obshch. 16 (1967), 209-292, In Russian.MR 0226187 (37:1777)
  • 9. V.A. Kozlov and V.G. Maz'ya, Differential equations with operator coefficients with applications to boundary value problems for partial differential equations, Springer Monogr. Math., Springer, Berlin, 1999. MR 1729870 (2001d:34090)
  • 10. M. Lesch, Operators of Fuchs type, conical singularities, and asymptotic methods, Teubner-Texte Math., vol. 136, B. G. Teubner, Stuttgart, 1997.MR 1449639 (98d:58174)
  • 11. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
  • 12. X. Liu and I. Witt, Asymptotic expansions for bounded solutions to semilinear Fuchsian equation, Doc. Math. 9 (2004), 207-250.MR 2117414 (2005m:35116)
  • 13. R.B. Melrose, Transformation of boundary value problems, Acta Math. 147 (1981), 149-236.MR 0639039 (83f:58073)
  • 14. S.A. Nazarov and B.A. Plamenevskij, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., vol. 13, de Gruyter, Berlin, 1994.MR 1283387 (95h:35001)
  • 15. S. Rempel and B.-W. Schulze, Asymptotics for elliptic mixed boundary problems, Math. Research, vol. 50, Akademie-Verlag, Berlin, 1989.MR 1002573 (90h:35083)
  • 16. B.-W. Schulze, Pseudo-differential operators on manifolds with singularities, Stud. Math. Appl., vol. 24, North-Holland, 1991. MR 1142574 (93b:47109)
  • 17. -, Boundary value problems and singular pseudo-differential operators, Wiley Ser. Pure Appl. Math., J. Wiley, Chichester, 1998.MR 1631763 (99m:35281)
  • 18. I. Witt, Explicit algebras with the Leibniz-Mellin translation product, Math. Nachr. 280 (2007), 326-337. MR 2292154
  • 19. -, Asymptotic algebras, Microlocal Analysis and Asymptotic Analysis of PDE, RIMS Kokyuroku, vol. 1211, Kyoto University, Kyoto, 2001, pp. 21-33.MR 1874953
  • 20. -, On the factorization of meromorphic Mellin symbols, Advances in Partial Differential Equations (Parabolicity, Volterra Calculus, and Conical Singularities) (S. Albeverio, M. Demuth, E. Schrohe, and B.-W. Schulze, eds.), Oper. Theory Adv. Appl., vol. 138, Birkhäuser, Basel, 2002, pp. 279-306.MR 1966207 (2004c:35440)
  • 21. -, Local asymptotic types, Manuscripta Math. 115 (2004), 1-17.MR 2092773 (2005g:47018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J70, 34B05, 41A58

Retrieve articles in all journals with MSC (2000): 35J70, 34B05, 41A58

Additional Information

Ingo Witt
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
Address at time of publication: Mathematical Institute, University of Göttingen, Bunsenstr. 3-5, D-37073 Göttingen, Germany

Keywords: Cone differential operators, discrete asymptotic types, function spaces with asymptotics, complete conormal symbols, Keldysh's formula, Green's formula
Received by editor(s): October 26, 2003
Received by editor(s) in revised form: April 20, 2005
Published electronically: June 25, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society