Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Green's formulas for cone differential operators


Author: Ingo Witt
Journal: Trans. Amer. Math. Soc. 359 (2007), 5669-5696
MSC (2000): Primary 35J70; Secondary 34B05, 41A58
Published electronically: June 25, 2007
MathSciNet review: 2336302
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Green's formulas for elliptic cone differential operators are established. This is achieved by an accurate description of the maximal domain of an elliptic cone differential operator and its formal adjoint; thereby utilizing the concept of a discrete asymptotic type. From this description, the singular coefficients replacing the boundary traces in classical Green's formulas are deduced.


References [Enhancements On Off] (What's this?)

  • 1. Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
  • 2. S. Coriasco, E. Schrohe, and J. Seiler, Differential operators on conic manifolds: maximal regularity and parabolic equations, Bull. Soc. Roy. Sci. Liège 70 (2001), no. 4-6, 207–229 (2002). Hommage à Pascal Laubin. MR 1904055
  • 3. J.B. Gil, T. Krainer, and G.A. Mendoza, Geometry and spectra of closed extensions of elliptic cone operators, to appear in Canadian J. Math.
  • 4. Juan B. Gil and Gerardo A. Mendoza, Adjoints of elliptic cone operators, Amer. J. Math. 125 (2003), no. 2, 357–408. MR 1963689
  • 5. I. C. Gohberg and E. I. Sigal, An operator generalization of the logarithmic residue theorem and Rouché’s theorem, Mat. Sb. (N.S.) 84(126) (1971), 607–629 (Russian). MR 0313856
  • 6. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
  • 7. M.V. Keldysh, On the eigenvalues and eigenfunctions of certain classes of non-selfadjoint linear operators, Dokl. Akad. Nauk SSSR 77 (1951), 11-14, In Russian.
  • 8. V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 0226187
  • 9. Vladimir Kozlov and Vladimir Maz′ya, Differential equations with operator coefficients with applications to boundary value problems for partial differential equations, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1729870
  • 10. Matthias Lesch, Operators of Fuchs type, conical singularities, and asymptotic methods, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 136, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1997. MR 1449639
  • 11. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
  • 12. Xiaochun Liu and Ingo Witt, Asymptotic expansions for bounded solutions to semilinear Fuchsian equations, Doc. Math. 9 (2004), 207–250 (electronic). MR 2117414
  • 13. Richard B. Melrose, Transformation of boundary problems, Acta Math. 147 (1981), no. 3-4, 149–236. MR 639039, 10.1007/BF02392873
  • 14. Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387
  • 15. Stephan Rempel and Bert-Wolfgang Schulze, Asymptotics for elliptic mixed boundary problems, Mathematical Research, vol. 50, Akademie-Verlag, Berlin, 1989. Pseudo-differential and Mellin operators in spaces with conormal singularity. MR 1002573
  • 16. B.-W. Schulze, Pseudo-differential operators on manifolds with singularities, Studies in Mathematics and its Applications, vol. 24, North-Holland Publishing Co., Amsterdam, 1991. MR 1142574
  • 17. Bert-Wolfgang Schulze, Boundary value problems and singular pseudo-differential operators, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1998. MR 1631763
  • 18. Ingo Witt, Explicit algebras with the Leibniz-Mellin translation product, Math. Nachr. 280 (2007), no. 3, 326–337. MR 2292154, 10.1002/mana.200410485
  • 19. Ingo Witt, Asymptotic algebras, Sūrikaisekikenkyūsho Kōkyūroku 1211 (2001), 21–33. Asymptotic analysis and microlocal analysis of PDE (Japanese) (Kyoto, 2000). MR 1874953
  • 20. Ingo Witt, On the factorization of meromorphic Mellin symbols, Parabolicity, Volterra calculus, and conical singularities, Oper. Theory Adv. Appl., vol. 138, Birkhäuser, Basel, 2002, pp. 279–306. MR 1966207
  • 21. Ingo Witt, Local asymptotic types, Manuscripta Math. 115 (2004), no. 1, 1–17. MR 2092773, 10.1007/s00229-004-0478-5

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J70, 34B05, 41A58

Retrieve articles in all journals with MSC (2000): 35J70, 34B05, 41A58


Additional Information

Ingo Witt
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
Address at time of publication: Mathematical Institute, University of Göttingen, Bunsenstr. 3-5, D-37073 Göttingen, Germany
Email: iwitt@uni-math.gwdg.de

DOI: https://doi.org/10.1090/S0002-9947-07-04082-2
Keywords: Cone differential operators, discrete asymptotic types, function spaces with asymptotics, complete conormal symbols, Keldysh's formula, Green's formula
Received by editor(s): October 26, 2003
Received by editor(s) in revised form: April 20, 2005
Published electronically: June 25, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.