Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Filament sets, aposyndesis, and the decomposition theorem of Jones


Authors: Janusz R. Prajs and Keith Whittington
Journal: Trans. Amer. Math. Soc. 359 (2007), 5991-6000
MSC (2000): Primary 54F15; Secondary 54H15
DOI: https://doi.org/10.1090/S0002-9947-07-04160-8
Published electronically: June 27, 2007
MathSciNet review: 2336313
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Applications of the work introduced by the authors in a recent article, Filament sets and homogeneous continua, are given to aposyndesis and local connectedness. The aposyndetic decomposition theorem of Jones is generalized to spaces with the property of Kelley.


References [Enhancements On Off] (What's this?)

  • 1. J. J. Charatonik, W. J. Charatonik and J. R. Prajs, Arc property of Kelley and absolute retracts for hereditarily unicoherent continua, Colloq. Math. 97 (2003), 49-65. MR 2010542 (2004h:54028)
  • 2. H. S. Davis, A note on connectedness im kleinen, Proc. Amer. Math. Soc. 19 (1968), 1237-1241. MR 0254814 (40:8021)
  • 3. H. S. Davis, D. P. Stadtlander and P. M. Swingle, Properties of the set functions $ T^n$, Portugal. Mat. 21 (1962), 113-133.MR 0142108 (25:5501)
  • 4. R. W. FitzGerald and P. M. Swingle, Core decomposition of continua, Fund. Math. 61 (1967), 33-50.MR 0224063 (36:7110)
  • 5. F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545-553. MR 0004771 (3:59e)
  • 6. -, Concerning non-aposyndetic continua, ibid. 70 (1948), 403-413.MR 0025161 (9:606h)
  • 7. -, On a certain type of homogeneous plane continuum, Proc. Amer. Math. Soc. 6 (1955), 735-740. MR 0071761 (17:180e)
  • 8. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. MR 0006505 (3:315b)
  • 9. P. Krupski, On homogeneous tree-like continua, Rend. Circ. Mat. Palermo (2), Suppl. 18 (1988), 327-336. MR 0958744 (89g:54077)
  • 10. P. Krupski and J. R. Prajs, Outlet points and homogeneous continua, Trans. Amer. Math. Soc. 318 (1990), 123-141. MR 0937246 (90f:54054)
  • 11. K. Kuratowski, Topology, Volume II, New edition, revised and augmented, Translated from French by A. Kirkor, Academic Press, New York-London, 1968.MR 0259835 (41:4467)
  • 12. L. F. McAuley, An atomic decomposition of continua into aposyndetic continua, Trans. Amer. Math. Soc. 88 (1958), 1-11. MR 0124033 (23:A1353)
  • 13. T. Mackowiak and E. D. Tymchatyn, Continuous mappings on continua II, Dissertationes Math. (Rozprawy Mat.) 225 (1984).MR 0739739 (87a:54048)
  • 14. J. R. Prajs and K. Whittington, Filament sets and homogeneous continua, Topology Appl. 154 (2007), 1581-1591.
  • 15. J. T. Rogers, Jr., Completely regular mappings and homogeneous, aposyndetic continua, Canad. J. Math. 33 (1981), 450-453.MR 0617635 (83a:54012)
  • 16. -, Decompositions of homogeneous continua, Pacific J. Math. 99 (1982), 137-144.MR 0651491 (83c:54045)
  • 17. -, Cell-like decompositions of homogeneous continua, Proc. Amer. Math. Soc. 87 (1983), 375-377. MR 0681852 (84e:54040)
  • 18. E. J. Vought, Monotone decompositions of continua, General topology and modern analysis, Academic Press, New York-London (1981) 105-113.MR 0619036 (83b:54004)
  • 19. R. W. Wardle, On a property of J. L. Kelley, Houston J. Math. 3 (1977), 291-299.MR 0458379 (56:16582)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 54F15, 54H15

Retrieve articles in all journals with MSC (2000): 54F15, 54H15


Additional Information

Janusz R. Prajs
Affiliation: Department of Mathematics and Statistics, California State University Sacramento, 6000 J Street, Sacramento, California 95819 – and – Institute of Mathematics, University of Opole, Ul. Oleska 48, 45-052 Opole, Poland
Email: prajs@csus.edu

Keith Whittington
Affiliation: Department of Mathematics, University of the Pacific, Stockton, California 95211
Email: kwhittin@pacific.edu

DOI: https://doi.org/10.1090/S0002-9947-07-04160-8
Keywords: Aposyndesis, aposyndetic, continuum, decomposition, Jones, Kelley, locally connected
Received by editor(s): June 3, 2005
Received by editor(s) in revised form: August 31, 2005
Published electronically: June 27, 2007
Additional Notes: The first author was supported by the National Science Foundation grant DMS-0405374 and by the RCA assigned time award 2004/05 at California State University Sacramento.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society