Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On $ p$-adic intermediate Jacobians


Authors: Wayne Raskind and Xavier Xarles
Journal: Trans. Amer. Math. Soc. 359 (2007), 6057-6077
MSC (2000): Primary 14K30; Secondary 14K99, 14F20
DOI: https://doi.org/10.1090/S0002-9947-07-04246-8
Published electronically: June 13, 2007
MathSciNet review: 2336316
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For an algebraic variety $ X$ of dimension $ d$ with totally degenerate reduction over a $ p$-adic field (definition recalled below) and an integer $ i$ with $ 1\leq i\leq d$, we define a rigid analytic torus $ J^i(X)$ together with an Abel-Jacobi mapping to it from the Chow group $ CH^i(X)_{hom}$ of codimension $ i$ algebraic cycles that are homologically equivalent to zero modulo rational equivalence. These tori are analogous to those defined by Griffiths using Hodge theory over $ \bf {C}$. We compare and contrast the complex and $ p$-adic theories. Finally, we examine a special case of a $ p$-adic analogue of the Generalized Hodge Conjecture.


References [Enhancements On Off] (What's this?)

  • [Be] A. Besser, A generalization of Coleman's $ p$-adic integration, Inventiones Math. 142 (2000) 397-434. MR 1794067 (2001i:14032)
  • [Bl] S. Bloch, Algebraic cycles and values of L-functions I, J. f. die reine und angewandte Math. 350 (1984) 94-108. MR 743535 (85i:11052)
  • [BK1] S. Bloch and K. Kato, $ p$-adic étale cohomology, Publ. Math. I.H.E.S. 63 (1986) 107-152. MR 849653 (87k:14018)
  • [BK2] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, Vol I, Progr.Math. 87, Birkhäuser, Boston, 1990. MR 1086888 (92g:11063)
  • [BGS] S. Bloch, H. Gillet and C. Soulé, Algebraic cycles on degenerate fibers, in Arithmetic Aspects of Algebraic Geometry, Cortona 1994, F. Catanese editor, 45-69. MR 1472491 (98i:14011)
  • [Con] C. Consani, Double complexes and Euler factors, Comp. Math. 111 (1998) 323-358. MR 1617133 (99b:11065)
  • [DeJ] A.J. de Jong, Smoothness, alterations and semi-stability, Publ. Math. I.H.E.S. 83 (1996) 52-96.
  • [De1] P. Deligne, Théorie de Hodge I, Actes du Congrès International des Mathématiciens, Nice, 1970, Tome I, 425-430. MR 0441965 (56:356)
  • [dS] E. de Shalit, The $ p$-adic monodromy-weight conjecture for $ p$-adically uniformized varieties, Compos. Math. 141 (2005), no. 1, 101-120. MR 2099771 (2005h:14049)
  • [Fa1] G. Faltings, $ p$-adic Hodge theory, Journal of the American Mathematical Society, 1 (1988) 255-299. MR 924705 (89g:14008)
  • [Fa2] G. Faltings, Crystalline cohomology and $ p$-adic Galois representations, in Algebraic Analysis, Geometry and Number Theory, Baltimore MD 1988, 25-80, Johns Hopkins University Press, 1989. MR 1463696 (98k:14025)
  • [GN] F. Guillén and V. Navarro-Aznar, Sur le théorème local des cycles invariants, Duke Math. J. 61 (1990), 133-155. MR 1068383 (91m:32040)
  • [Gr] P. Griffiths, On the periods of certain rational integrals: I and II, Ann. Math. 90 (1969), 460-541. MR 0260733 (41:5357)
  • [GS] B. Gross and C. Schoen, The modified diagonal cycle on a triple product of curves, Ann. de l'Institut Fourier 45 (1995) 649-679. MR 1340948 (96e:14008)
  • [Gro] A. Grothendieck, Hodge's general conjecture is false for trivial reasons, Topology 8 (1969) 299-303. MR 0252404 (40:5624)
  • [Ha] U. Hartl, Semi-stability and base change, Archiv der Mathematik 77 (2001), 215-221. MR 1865862 (2002h:14021)
  • [HM] L. Hesselholt and I. Madsen, On the K-theory of local fields, Annals of Math. 158 (2003) 1-113. MR 1998478 (2004k:19003)
  • [H] O. Hyodo, A note on $ p$-adic étale cohomology in the semi-stable reduction case, Invent. Math. 91 (1988), 543-557. MR 0928497
  • [I1] L. Illusie, Cohomologie de de Rham et cohomologie étale $ p$-adique (D'après G. Faltings, J.-M. Fontaine et al.) in Séminaire Bourbaki, 1989-1990, Asterisque 189-190 (1990), 325-374. MR 1099881 (92e:11034)
  • [I2] L. Illusie, Ordinarité des intersections complètes générales, in The Grothendieck Festschrift, Vol II, Progr. Math, Vol. 87, Birkhäuser, Boston, 1990. MR 1106904 (93h:14015)
  • [I3] L. Illusie, Réduction semi-stable ordinaire, cohomologie étale $ p$-adique et cohomologie de de Rham, d'après Bloch-Kato et Hyodo, in Périodes p-adiques, Séminaire de Bures, 1988 (J.-M. Fontaine ed.), Astérisque 223 (1994), 209-220.
  • [It] T. Ito, Weight-Monodromy conjecture for $ p$-adically uniformized varieties, Invent. Math. 159 (2005), no. 3, 607-656. MR 2125735 (2005m:14033)
  • [Ku] K. Künnemann, Projective regular models for abelian varieties, semistable reduction, and the height pairing, Duke Math. J. 95 (1998), 161-212. MR 1646554 (1999m:14043)
  • [Le] M. Levine, The indecomposable $ K_3$ of fields, Annales Sci. École Normale Supérieure 22 (1989) 255-344. MR 1005161 (91a:11061)
  • [Li] D. Lieberman, On higher Picard varieties, American J. of Mathematics, 90 (1968) 1165-1199. MR 0238857 (39:217)
  • [Ma] Y. Manin, Three-dimensional hyperbolic geometry as $ \infty$-adic Arakelov geometry, Invent. Math. 104 (1991) 223-244. MR 1098608 (92f:14019)
  • [MD] Y. Manin and V. Drinfeld, Periods of $ p$-adic Schottky groups, J. reine und ang. Math 262/263 (1973) 239-247. MR 0396582 (53:444)
  • [MS] A.S. Merkur'ev and A. Suslin, The group $ K_3$ of a field, Izv. Akad. Nauk. SSSR (1989), English translation in Mathematics of the USSR: Izvestia (1989).
  • [Mu1] D. Mumford, An analytic construction of degenerating curves over a complete local ring, Compositio Math. 24 (1972) 129-174. MR 0352105 (50:4592)
  • [Mu2] D. Mumford, An analytic construction of degenerating abelian varieties over complete local rings, Compositio Math. 24 (1972) 239-272. MR 0352106 (50:4593)
  • [Mur] J. Murre, Un résultat en théorie de cycles algébriques de codimension deux, Comptes Rendus de l'Académie des Sciences 296 (1983) 981-984. MR 777590 (86c:14004)
  • [Mus] G.A. Mustafin, Non archimedean uniformization (in Russian), Mat. Sb. 105 (147) (1978), 207-237, 287; English translation in Mathematics of the USSR: Sbornik 34 (1978), 187-214. MR 0491696 (58:10901)
  • [RZ1] M. Rapoport and Th. Zink, Über die locale Zetafunktion von Shimuravarietäten, Monodromie-filtration und verschwindende Zyklen in ungleicher Characteristic, Invent. Math. 68 (1982), 21-101. MR 666636 (84i:14016)
  • [R1] W. Raskind, Higher $ \ell$-adic Abel-Jacobi mappings and filtrations on Chow groups, Duke Math. J. 78 (1995) 33-57. MR 1328751 (96d:14009)
  • [R2] W. Raskind, A generalized Hodge-Tate conjecture for varieties with totally degenerate reduction over $ p$-adic fields, in Algebra and Number Theory : Proceedings of the Silver Jubilee Conference University of Hyderabad, edited by Rajat Tandon. New Delhi, Hindustan Book Agency.
  • [R3] W. Raskind, On the $ p$-adic Tate conjecture for divisors on varieties with totally degenerate reduction, in preparation.
  • [RX] W. Raskind and X. Xarles, On the étale cohomology of algebraic varieties with totally degenerate reduction over $ p$-adic fields, to appear in J. of Mathematical Sciences of the University of Tokyo. MR 991983 (90d:14011)
  • [Ray1] M. Raynaud, Variétés abéliennes et géométrie rigide, Actes du ICM, Nice, 1970, Tome I, 473-477. MR 0427326 (55:360)
  • [Ray2] M. Raynaud, 1-motifs et monodromie géométrique, in Périodes p-adiques, Séminaire de Bures, 1988 (J.-M. Fontaine ed.), Astérisque 223 (1994), 295-319. MR 1293976 (95h:14020)
  • [Se] J.-P. Serre, Abelian $ \ell$-adic representations and elliptic curves, Benjamin 1967.
  • [St] J.H. Steenbrink, Limits of Hodge Structures, Invent. Math. 31 (1976), 223-257. MR 0429885 (55:2894)
  • [Tsu] T. Tsuji, $ p$-adic étale cohomology and crystalline cohomology in the semistable reduction case, Inventiones Math 137 (1999) 233-411. MR 1705837 (2000m:14024)
  • [W1] A. Weil, Foundations of Algebraic Geometry, American Mathematical Society Colloquium Publications Series, Volume 29, Revised Edition, 1962. MR 0144898 (26:2439)
  • [W2] A. Weil, On Picard varieties, American Journal of Math., 74 (1952) 865-894; also in Oeuvres Scientifiques, Volume II, Springer-Verlag Berlin 1978. MR 0050330 (14:314e)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14K30, 14K99, 14F20

Retrieve articles in all journals with MSC (2000): 14K30, 14K99, 14F20


Additional Information

Wayne Raskind
Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
Email: raskind@math.usc.edu

Xavier Xarles
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Barcelona, Spain
Email: xarles@mat.uab.es

DOI: https://doi.org/10.1090/S0002-9947-07-04246-8
Received by editor(s): May 23, 2005
Received by editor(s) in revised form: November 6, 2005
Published electronically: June 13, 2007
Additional Notes: The first author was partially supported by NSF grant 0070850, SFB 478 (Münster), CNRS France, and sabbatical leave from the University of Southern California
The second author was partially supported by grant PMTM2006-11391 from DGI
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society