Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

Clusters, Coxeter-sortable elements and noncrossing partitions


Author: Nathan Reading
Journal: Trans. Amer. Math. Soc. 359 (2007), 5931-5958
MSC (2000): Primary 20F55; Secondary 05E15, 05A15
DOI: https://doi.org/10.1090/S0002-9947-07-04319-X
Published electronically: June 27, 2007
MathSciNet review: 2336311
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce Coxeter-sortable elements of a Coxeter group $ W.$ For finite $ W,$ we give bijective proofs that Coxeter-sortable elements are equinumerous with clusters and with noncrossing partitions. We characterize Coxeter-sortable elements in terms of their inversion sets and, in the classical cases, in terms of permutations.


References [Enhancements On Off] (What's this?)

  • 1. C. Athanasiadis, T. Brady and C. Watt, Shellability of noncrossing partition lattices, Proc. Amer. Math. Soc. 135 (2007), no. 4, 939-949. MR 2262893
  • 2. I. Bernštein, I. Gel'fand, and V. Ponomarev, Coxeter functors, and Gabriel's theorem. Uspehi Mat. Nauk 28 (1973) no. 2(170), 19-33. English translation in Russian Math. Surveys 28 (1973), no. 2, 17-32. MR 0393065 (52:13876)
  • 3. D. Bessis, The dual braid monoid, Ann. Sci. Ecole Norm. Sup. 36 (2003) 647-683. MR 2032983 (2004m:20071)
  • 4. S. Billey and T. Braden, Lower bounds for Kazhdan-Lusztig polynomials from patterns, Transform. Groups 8 (2003), no. 4, 321-332. MR 2015254 (2005a:20060)
  • 5. A. Björner and M. Wachs, Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997) no. 10, 3945-3975. MR 1401765 (98b:06008)
  • 6. N. Bourbaki, Lie groups and Lie algebras, Chapters 4-6, Springer-Verlag, Berlin, 2002. MR 1890629 (2003a:17001)
  • 7. T. Brady and C. Watt, A partial order on the orthogonal group, Comm. Algebra 30 (2002) no. 8, 3749-3754. MR 1922309 (2003h:20083)
  • 8. T. Brady and C. Watt, Non-crossing partition lattices in finite real reflection groups, to appear in Tran. Amer. Math. Soc.
  • 9. F. Chapoton, S. Fomin, and A. Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), 537-566. MR 1941227 (2003j:52014)
  • 10. M. Dyer, Hecke algebras and shellings of Bruhat intervals. Compositio Math. 89 (1993), no. 1, 91-115. MR 1248893 (95c:20053)
  • 11. S. Fomin and A. Zelevinsky, $ Y$-systems and generalized associahedra, Ann. of Math. 158 (2003), 977-1018. MR 2031858 (2004m:17010)
  • 12. S. Fomin and A. Zelevinsky, Cluster algebras. II. Finite type classification. Invent. Math. 154 (2003), no. 1, 63-121. MR 2004457 (2004m:17011)
  • 13. S. Fomin and N. Reading, Root systems and generalized associahedra, IAS/Park City Math. Ser., to appear.
  • 14. J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge Univ. Press, 1990. MR 1066460 (92h:20002)
  • 15. D. Knuth, The art of computer programming, Volume 1: Fundamental algorithms, Addison-Wesley, Reading, Mass., second edition, 1973. MR 0378456 (51:14624)
  • 16. R. Marsh, M. Reineke and A. Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003) no. 10, 4171-4186. MR 1990581 (2004g:52014)
  • 17. J. McCammond, Noncrossing partitions in surprising locations, Amer. Math. Monthly 113 (2006), 598-610. MR 2252931
  • 18. M. Picantin, Explicit presentations for the dual braid monoids, C. R. Math. Acad. Sci. Paris 334 (2002), 843-848. MR 1909925 (2003d:20046)
  • 19. N. Reading, Lattice congruences of the weak order, Order, 21 (2004) no. 4, 315-344. MR 2209128
  • 20. N. Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A 110 (2005) no. 2, 237-273. MR 2142177 (2006b:20054)
  • 21. N. Reading, Cambrian Lattices, Adv. Math. 205 (2006), 313-353.
  • 22. N. Reading, Sortable elements and Cambrian lattices, to appear in Algebra Universalis.
  • 23. N. Reading and D. Speyer, Cambrian Fans, preprint, 2006 arXiv:math.CO/0606201.
  • 24. V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), 195-222. MR 1483446 (99f:06005)
  • 25. J. Shi, The enumeration of Coxeter elements, J. Algebraic Combin. 6 (1997), no. 2, 161-171. MR 1436533 (98d:20048)
  • 26. C. Ingalls and H. Thomas, Generalized Catalan phenomena via representation theory of quivers, preprint, 2006 arXiv:math.RT/0612219.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20F55, 05E15, 05A15

Retrieve articles in all journals with MSC (2000): 20F55, 05E15, 05A15


Additional Information

Nathan Reading
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043
Address at time of publication: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205
Email: nreading@umich.edu, nathan_reading@ncsu.edu

DOI: https://doi.org/10.1090/S0002-9947-07-04319-X
Received by editor(s): August 18, 2005
Published electronically: June 27, 2007
Additional Notes: The author was partially supported by NSF grant DMS-0202430.
Article copyright: © Copyright 2007 Nathan Reading

American Mathematical Society