Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Brauer algebras, symplectic Schur algebras and Schur-Weyl duality

Authors: Richard Dipper, Stephen Doty and Jun Hu
Journal: Trans. Amer. Math. Soc. 360 (2008), 189-213
MSC (2000): Primary 16G99
Published electronically: August 16, 2007
MathSciNet review: 2342000
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the Schur-Weyl duality between the symplectic group and the Brauer algebra over an arbitrary infinite field $ K$. We show that the natural homomorphism from the Brauer algebra $ B_{n}(-2m)$ to the endomorphism algebra of the tensor space $ (K^{2m})^{\otimes n}$ as a module over the symplectic similitude group $ GSp_{2m}(K)$ (or equivalently, as a module over the symplectic group $ Sp_{2m}(K)$) is always surjective. Another surjectivity, that of the natural homomorphism from the group algebra for $ GSp_{2m}(K)$ to the endomorphism algebra of $ (K^{2m})^{\otimes n}$ as a module over $ B_{n}(-2m)$, is derived as an easy consequence of S. Oehms's results [S. Oehms, J. Algebra (1) 244 (2001), 19-44].

References [Enhancements On Off] (What's this?)

  • [B] R. Brauer, On algebras which are connected with semisimple continuous groups, Ann. of Math. 38 (1937), 857-872. MR 1503378
  • [B1] W. P. Brown, An algebra related to the orthogonal group, Michigan Math. J. 3 (1955-1956), 1-22. MR 0072122 (17:232a)
  • [B2] W. P. Brown, The semisimplicity of $ \omega _{f}^{n}$, Ann. of Math. 63 (1956), 324-335. MR 0075931 (17:821g)
  • [BW] J. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. (1) 313 (1989), 249-273. MR 992598 (90g:57004)
  • [CC] C. de Concini and C. Procesi, A characteristic free approach to invariant theory, Adv. Math. 21 (1976), 330-354. MR 0422314 (54:10305)
  • [CL] R. W. Carter and G. Lusztig, On the modular representations of general linear and symmetric groups, Math. Z. 136 (1974), 193-242. MR 0354887 (50:7364)
  • [CP] V. Chari and A. Pressley, ``A guide to quantum groups,'' Cambridge University Press, Cambridge, 1994. MR 1300632 (95j:17010)
  • [DD] R. Dipper and S. Donkin, Quantum $ GL_{n}$, Proc. London Math. Soc. 63 (1991), 165-211. MR 1105721 (92g:16055)
  • [Do1] S. Donkin, On Schur algebras and related algebras I, J. Alg. 104 (1986), 310-328. MR 866778 (89b:20084a)
  • [Do2] S. Donkin, Good filtrations of rational modules for reductive groups, Arcata Conf. on Representations of Finite Groups. Proceedings of Symp. in Pure Math., 47 (1987), 69-80. MR 933351 (89f:20048)
  • [DPS] J. Du, B. Parshall and L. Scott, Quantum Weyl reciprocity and tilting modules, Commun. Math. Phys. 195 (1998), 321-352. MR 1637785 (99k:17026)
  • [Dt] S. Doty, Polynomial representations, algebraic monoids, and Schur algebras of classic type, J. Pure Appl. Algebra 123 (1998), 165-199. MR 1492900 (98j:20057)
  • [E] J. Enyang, Cellular bases for the Brauer and Birman-Murakami-Wenzl algebras, J. Alg. 281 (2004), 413-449. MR 2098377 (2005f:20008)
  • [GL] J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996),1-34. MR 1376244 (97h:20016)
  • [Gr] J. A. Green, ``Polynomial representations of $ GL_{n}$,'' Lect. Notes in Math. Vol. 830, Springer-Verlag, 1980. MR 606556 (83j:20003)
  • [Gri] D. Ju. Grigor'ev, An analogue of the Bruhat decomposition for the closure of the cone of a Chevalley group of the classical series, Sov. Math. Doklady 23 (1981), 393-397.
  • [GW] R. Goodman and N. R. Wallach, ``Representations and invariants of classical groups,'' Cambridge University Press, 1998. MR 1606831 (99b:20073)
  • [Ja] J. C. Jantzen, ``Representations of Algebraic Groups,'' Academic Press, Inc, 1987. MR 899071 (89c:20001)
  • [KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • [Ko] B. Kostant, Group over $ \mathbb{Z} $, Proceedings of Symp. in Pure Math., 9 (1966), 90-98. MR 0207713 (34:7528)
  • [Lu1] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990), 257-296. MR 1013053 (91e:17009)
  • [Lu2] G. Lusztig, Quantum groups at roots of $ 1$, Geometriae Dedicata 35 (1990), 89-114. MR 1066560 (91j:17018)
  • [Lu3] G. Lusztig, ``Introduction to Quantum Groups,'' Progress in Math., 110, Birkhäuser, Boston, 1990. MR 1227098 (94m:17016)
  • [M] J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. (4) 26 (1987), 745-758. MR 927059 (89c:57007)
  • [Mu] E. Murphy, The representations of Hecke algebras of type $ A_{n}$, J. Alg. 173 (1995), 97-121. MR 1327362 (96b:20013)
  • [Oe] S. Oehms, Centralizer coalgebras, FRT-construction, and symplectic monoids, J. Algebra (1) 244 (2001), 19-44. MR 1856529 (2002h:16062)
  • [Sc] I. Schur, Über die rationalen Darstellungen der allgemeinen linearen Gruppe, (1927). Reprinted in I. Schur, Gesammelte Abhandlungen, Vol. III, pp. 68-85, Springer-Verlag, Berlin, 1973.
  • [T] R. Tange, The symplectic ideal and a double centraliser theorem, preprint, arXiv:0705.0377, (2007).
  • [W] H. Weyl, ``The classical groups, their invariants and representations,'' Princeton University Press, 1946. MR 1488158 (98k:01049)
  • [Xi] C. C. Xi, On the quasi-heredity of Birman-Wenzl algebras, Adv. Math. (2) 154 (2000), 280-298. MR 1784677 (2001g:20008)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G99

Retrieve articles in all journals with MSC (2000): 16G99

Additional Information

Richard Dipper
Affiliation: Mathematisches Institut B, Universität Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany

Stephen Doty
Affiliation: Department of Mathematics and Statistics, Loyola University Chicago, 6525 North Sheridan Road, Chicago, Illinois 60626

Jun Hu
Affiliation: Department of Applied Mathematics, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China

Received by editor(s): April 8, 2005
Received by editor(s) in revised form: September 27, 2005
Published electronically: August 16, 2007
Additional Notes: The first author received support from DOD grant MDA904-03-1-00.
The second author gratefully acknowledges support from DFG Project No. DI 531/5-2
The third author was supported by the Alexander von Humboldt Foundation and the National Natural Science Foundation of China (Project 10401005) and the Program NCET
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society