Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the shape of interlayer vortices in the Lawrence-Doniach model


Authors: Stan Alama, Lia Bronsard and Etienne Sandier
Journal: Trans. Amer. Math. Soc. 360 (2008), 1-34
MSC (2000): Primary 35J50, 58J37
Published electronically: August 6, 2007
MathSciNet review: 2341992
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Lawrence-Doniach model for layered superconductors, in which stacks of parallel superconducting planes are coupled via the Josephson effect. To model experiments in which the superconductor is placed in an external magnetic field oriented parallel to the superconducting planes, we study the structure of isolated vortices for a doubly periodic problem. We consider a singular limit which simulates certain experimental regimes in which isolated vortices have been observed, corresponding to letting the interlayer spacing of the superconducting planes tend to zero and the Ginzburg-Landau parameter $ \kappa\to\infty$ simultaneously, but at a fixed relative rate.


References [Enhancements On Off] (What's this?)

  • [ABeB1] S. Alama, L. Bronsard, and A. J. Berlinsky, Periodic vortex lattices for the Lawrence-Doniach model of layered superconductors in a parallel field, Commun. Contemp. Math. 3 (2001), no. 3, 457–494. MR 1849651, 10.1142/S0219199701000457
  • [ABeB2] S. Alama, A. J. Berlinsky, and L. Bronsard, Minimizers of the Lawrence-Doniach energy in the small-coupling limit: finite width samples in a parallel field, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 3, 281–312 (English, with English and French summaries). MR 1956952, 10.1016/S0294-1449(01)00081-6
  • [An] P.W. Anderson, c-Axis Electrodynamics as Evidence for the Interlayer Theory of High-Temperature Superconductivity, Science, vol. 279 (1998), pp. 1196-1198.
  • [BaK] P. Bauman, Y. Ko, Analysis of solutions to a coupled Ginzburg-Landau system for layered superconductors, preprint.
  • [BBH] Fabrice Bethuel, Haïm Brezis, and Frédéric Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1269538
  • [BeRi] Fabrice Bethuel and Tristan Rivière, Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 3, 243–303 (English, with English and French summaries). MR 1340265
  • [Bo] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
  • [Br] Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
  • [Bu] L. Bulaevski{\u{\i\/}}\kern.15em, Magnetic properties of layered superconductors with weak interaction between the layers, Sov. Phys. JETP, vol. 37 (1973), pp 1133-1136.
  • [BuCm] L. Bulaevski{\u{\i\/}}\kern.15emand J. Clem, Vortex lattice of highly anisotropic layered superconductors in strong, parallel magnetic fields, Phys. Rev. B44 (1991), pp 10234-10238.
  • [ChDG] S. Jonathan Chapman, Qiang Du, and Max D. Gunzburger, On the Lawrence-Doniach and anisotropic Ginzburg-Landau models for layered superconductors, SIAM J. Appl. Math. 55 (1995), no. 1, 156–174. MR 1313011, 10.1137/S0036139993256837
  • [CmCo] J. Clem and M. Coffey, Viscous flux motion in a Josephson-coupled layer model of high-$ T_c$ superconductors, Phys. Rev. vol. B42 (1990), pp. 6209-6216.
  • [Fa] B. Farid, Rosencrantz and Guildenstern may not be dead; on the interlayer vortices in Tl-2201, J. Phys., vol. C 10 (1998), pp. L589-L596.
  • [Iy] Y. Iye, How Anisotropic Are the Cuprate High $ T_c$ Superconductors? Comments Cond. Mat. Phys., vol. 16 (1992), pp. 89-111.
  • [Je] Robert L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999), no. 4, 721–746. MR 1684723, 10.1137/S0036141097300581
  • [KAVB] P. Kes, J. Aarts, V. Vinokur, and C. van der Beek, Dissipation in Highly Anisotropic Superconductors, Phys. Rev. Lett. vol. 64 (1990), pp 1063-1066.
  • [LaDo] W. Lawrence and S. Doniach, Proceedings of the Twelfth International Conference on Low Temperature Physics, E. Kanda (ed.), Academic Press of Japan, Kyoto, 1971, p. 361.
  • [Mo] K.A. Moler, J.R. Kirtley, D.G. Hinks, T.W. Li, and M. Xu, Images of Interlayer Josephson Vortices in Tl$ {}_2$Ba$ {}_2$CuO $ {}_{6+\delta}$, Science, vol. 279 (1998), pp. 1193-1196.
  • [S] E. Sandier, Lower Bounds for the Energy of Unit Vector Fields and Applications, J. Functional Analysis, vol. 152 (1998), 379-403.
  • [Se] Sylvia Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field. I, Commun. Contemp. Math. 1 (1999), no. 2, 213–254. MR 1696100, 10.1142/S0219199799000109
  • [tH] G. ’t Hooft, A property of electric and magnetic flux in non-Abelian gauge theories, Nuclear Phys. B 153 (1979), no. 1-2, 141–160. MR 535106, 10.1016/0550-3213(79)90465-6

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J50, 58J37

Retrieve articles in all journals with MSC (2000): 35J50, 58J37


Additional Information

Stan Alama
Affiliation: Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

Lia Bronsard
Affiliation: Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

Etienne Sandier
Affiliation: Departement des Mathématiques, Université Paris XII, 64 avenue du Général de Gaulle, 94010 Créteil Cedex, France

DOI: http://dx.doi.org/10.1090/S0002-9947-07-04188-8
Keywords: Calculus of variations, elliptic equations and systems, superconductivity, vortices.
Received by editor(s): March 8, 2004
Received by editor(s) in revised form: June 16, 2005
Published electronically: August 6, 2007
Additional Notes: The first and second authors were supported by an NSERC Research Grant
Article copyright: © Copyright 2007 American Mathematical Society