Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Locally quasiconvex small-cancellation groups


Authors: Jonathan P. McCammond and Daniel T. Wise
Journal: Trans. Amer. Math. Soc. 360 (2008), 237-271
MSC (2000): Primary 20F06, 20F67, 57M07
DOI: https://doi.org/10.1090/S0002-9947-07-04206-7
Published electronically: July 23, 2007
MathSciNet review: 2342002
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we prove several results about the local quasiconvexity behavior of small-cancellation groups. In addition to strengthening our previously obtained positive results, we also describe several families of negative examples. Also, as the strength of the assumed small-cancellation conditions increases, the gap between our positive results and our counterexamples narrows. Finally, as an additional application of these techniques, we include similar results and counterexamples for Coxeter groups.


References [Enhancements On Off] (What's this?)

  • 1. J. M. Alonso and et al.
    Notes on word hyperbolic groups.
    In Group theory from a geometrical viewpoint (Trieste, 1990), pages 3-63. World Sci. Publishing, River Edge, NJ, 1991.
    Edited by H. Short. MR 1170363 (93g:57001)
  • 2. Gilbert Baumslag, W. W. Boone, and B. H. Neumann.
    Some unsolvable problems about elements and subgroups of groups.
    Math. Scand., 7:191-201, 1959. MR 0163948 (29:1247)
  • 3. Mladen Bestvina and Noel Brady.
    Morse theory and finiteness properties of groups.
    Invent. Math., 129(3):445-470, 1997. MR 1465330 (98i:20039)
  • 4. Robert Bieri, Walter D. Neumann, and Ralph Strebel.
    A geometric invariant of discrete groups.
    Invent. Math., 90(3):451-477, 1987. MR 914846 (89b:20108)
  • 5. N. Bourbaki.
    Groupes et algèbres de Lie. Chapitres IV-VI.
    Hermann, Paris, 1968.
    Actualités Scientifiques et Industrielles, No. 1337. MR 0240238 (39:1590)
  • 6. Noel Brady.
    Branched coverings of cubical complexes and subgroups of hyperbolic groups.
    J. London Math. Soc. (2), 60(2):461-480, 1999. MR 1724853 (2000j:20076)
  • 7. Mark Feighn and Michael Handel.
    Mapping tori of free group automorphisms are coherent.
    Ann. of Math. (2), 149(3):1061-1077, 1999. MR 1709311 (2000i:20050)
  • 8. S. M. Gersten.
    Questions on geometric group theory for the Max Dehn seminar.
    Available at ftp.math.utah.edu/u/ma/gersten/MaxDehnSeminar/hyp-quest.ps.
  • 9. Rita Gitik, Mahan Mitra, Eliyahu Rips, and Michah Sageev.
    Widths of subgroups.
    Trans. Amer. Math. Soc., 350(1):321-329, 1998. MR 1389776 (98e:20048)
  • 10. Catherine Greenhill, Jeong Han Kim, and Nicholas C. Wormald.
    Hamiltonian decompositions of random bipartite regular graphs.
    J. Combin. Theory Ser. B, 90(2):195-222, 2004. MR 2034027 (2004m:05242)
  • 11. James E. Humphreys.
    Reflection groups and Coxeter groups.
    Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • 12. M. Kapovich.
    Private communication.
  • 13. Roger C. Lyndon and Paul E. Schupp.
    Combinatorial group theory.
    Springer-Verlag, Berlin-New York, 1977.
    Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. MR 0577064 (58:28182)
  • 14. J. McCammond and D. Wise.
    Coherence, locally quasiconvexity, and the perimeter of $ 2$-complexes.
    Geom. Funct. Anal. 15:859-927, 2005. MR 2221153
  • 15. Jonathan P. McCammond and Daniel T. Wise.
    Fans and ladders in small cancellation theory.
    Proc. London Math. Soc. (3), 84(3):599-644, 2002. MR 1888425 (2003b:20047)
  • 16. E. Rips.
    Subgroups of small cancellation groups.
    Bull. London Math. Soc., 14(1):45-47, 1982. MR 642423 (83c:20049)
  • 17. R. W. Robinson and N. C. Wormald.
    Almost all regular graphs are Hamiltonian.
    Random Structures Algorithms, 5(2):363-374, 1994. MR 1262985 (95g:05092)
  • 18. Daniel T. Wise.
    Incoherent negatively curved groups.
    Proc. Amer. Math. Soc., 126(4):957-964, 1998. MR 1423338 (98f:20016)
  • 19. Daniel T. Wise.
    The residual finiteness of positive one-relator groups.
    Comment. Math. Helv., 76(2):314-338, 2001. MR 1839349 (2002d:20043)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20F06, 20F67, 57M07

Retrieve articles in all journals with MSC (2000): 20F06, 20F67, 57M07


Additional Information

Jonathan P. McCammond
Affiliation: Department of Mathematics, Universtiy of California, Santa Barbara, Santa Barbara, California 93106
Email: jon.mccammond@math.ucsb.edu

Daniel T. Wise
Affiliation: Department of Mathematics, McGill University, Montreal, Quebec, Canada H3A 2K6
Email: wise@math.mcgill.ca

DOI: https://doi.org/10.1090/S0002-9947-07-04206-7
Keywords: Coherent, locally quasiconvex
Received by editor(s): April 26, 2004
Received by editor(s) in revised form: October 7, 2005
Published electronically: July 23, 2007
Additional Notes: The first author was supported under NSF grants DMS-99781628 and DMS-0101506
The second author was supported by grants from NSERC and NATEQ
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society