The infinity Laplacian, Aronsson's equation and their generalizations
Authors:
E. N. Barron, L. C. Evans and R. Jensen
Journal:
Trans. Amer. Math. Soc. 360 (2008), 77101
MSC (2000):
Primary 35C99, 35J60; Secondary 49L20, 49L25
Published electronically:
July 25, 2007
MathSciNet review:
2341994
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The infinity Laplace equation arose originally as a sort of EulerLagrange equation governing the absolute minimizer for the variational problem of minimizing the functional esssup The more general functional esssup leads similarly to the socalled Aronsson equation In this paper we show that these PDE operators and various interesting generalizations also appear in several other contexts seemingly quite unrelated to variational problems, including twoperson game theory with random order of play, rapid switching of states in control problems, etc. The resulting equations can be parabolic and inhomogeneous, equation types precluded in conventional variational problems.
 [A1]
Gunnar
Aronsson, Minimization problems for the functional
𝑠𝑢𝑝ₓ𝐹(𝑥,𝑓(𝑥),𝑓′(𝑥)),
Ark. Mat. 6 (1965), 33–53 (1965). MR 0196551
(33 #4738)
 [A2]
Gunnar
Aronsson, Minimization problems for the functional
𝑠𝑢𝑝ₓ𝐹(𝑥,𝑓(𝑥),𝑓′(𝑥)).
II, Ark. Mat. 6 (1966), 409–431 (1966). MR 0203541
(34 #3391)
 [A3]
Gunnar
Aronsson, Extension of functions satisfying Lipschitz
conditions, Ark. Mat. 6 (1967), 551–561 (1967).
MR
0217665 (36 #754)
 [A4]
Gunnar
Aronsson, On the partial differential equation
𝑢ₓ²𝑢ₓₓ+2𝑢ₓ𝑢_{𝑦}𝑢_{𝑥𝑦}+𝑢_{𝑦}²𝑢_{𝑦𝑦}=0,
Ark. Mat. 7 (1968), 395–425 (1968). MR 0237962
(38 #6239)
 [A5]
Gunnar
Aronsson, Minimization problems for the functional
𝑠𝑢𝑝ₓ𝐹(𝑥,𝑓(𝑥),𝑓′(𝑥)).
III, Ark. Mat. 7 (1969), 509–512 (1969). MR 0240690
(39 #2035)
 [ACJ]
Gunnar
Aronsson, Michael
G. Crandall, and Petri
Juutinen, A tour of the theory of absolutely
minimizing functions, Bull. Amer. Math. Soc.
(N.S.) 41 (2004), no. 4, 439–505. MR 2083637
(2005k:35159), http://dx.doi.org/10.1090/S0273097904010353
 [B]
E.
N. Barron, Viscosity solutions and analysis in
𝐿^{∞}, Nonlinear analysis, differential equations and
control (Montreal, QC, 1998), NATO Sci. Ser. C Math. Phys. Sci.,
vol. 528, Kluwer Acad. Publ., Dordrecht, 1999, pp. 1–60. MR 1695005
(2001c:49045)
 [BJW]
E.
N. Barron, R.
R. Jensen, and C.
Y. Wang, The Euler equation and absolute minimizers of
𝐿^{∞} functionals, Arch. Ration. Mech. Anal.
157 (2001), no. 4, 255–283. MR 1831173
(2002m:49006), http://dx.doi.org/10.1007/PL00004239
 [BP]
H.
Brézis and A.
Pazy, Convergence and approximation of semigroups of nonlinear
operators in Banach spaces, J. Functional Analysis 9
(1972), 63–74. MR 0293452
(45 #2529)
 [CGG]
Yun
Gang Chen, Yoshikazu
Giga, and Shun’ichi
Goto, Uniqueness and existence of viscosity solutions of
generalized mean curvature flow equations, J. Differential Geom.
33 (1991), no. 3, 749–786. MR 1100211
(93a:35093)
 [CIL]
Michael
G. Crandall, Hitoshi
Ishii, and PierreLouis
Lions, User’s guide to viscosity
solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67. MR 1118699
(92j:35050), http://dx.doi.org/10.1090/S027309791992002665
 [E1]
Lawrence
C. Evans, The perturbed test function method for viscosity
solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A
111 (1989), no. 34, 359–375. MR 1007533
(91c:35017), http://dx.doi.org/10.1017/S0308210500018631
 [E2]
Lawrence
C. Evans, Regularity for fully nonlinear elliptic equations and
motion by mean curvature, Viscosity solutions and applications
(Montecatini Terme, 1995) Lecture Notes in Math., vol. 1660,
Springer, Berlin, 1997, pp. 98–133. MR 1462701
(98f:35046), http://dx.doi.org/10.1007/BFb0094296
 [ES]
L.
C. Evans and J.
Spruck, Motion of level sets by mean curvature. I, J.
Differential Geom. 33 (1991), no. 3, 635–681.
MR
1100206 (92h:35097)
 [F]
Mark
Freidlin, Functional integration and partial differential
equations, Annals of Mathematics Studies, vol. 109, Princeton
University Press, Princeton, NJ, 1985. MR 833742
(87g:60066)
 [J]
Robert
Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm
of the gradient, Arch. Rational Mech. Anal. 123
(1993), no. 1, 51–74. MR 1218686
(94g:35063), http://dx.doi.org/10.1007/BF00386368
 [KS]
R.V. Kohn and S. Serfaty, A deterministic controlbased approach to motion by mean curvature, preprint, 2004.
 [LG]
E. Le Gruyer, On absolutely minimizing Lipschitz extensions and the PDE , preprint, 2004.
 [LGA]
E.
Le Gruyer and J.
C. Archer, Harmonious extensions, SIAM J. Math. Anal.
29 (1998), no. 1, 279–292 (electronic). MR 1617186
(99d:54008), http://dx.doi.org/10.1137/S0036141095294067
 [O]
A. Oberman, Convergent difference schemes for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions, preprint.
 [PSSW]
Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug of war and the infinity Laplacian, preprint.
 [P]
Manuel
Portilheiro, Weak solutions for equations defined by accretive
operators. I, Proc. Roy. Soc. Edinburgh Sect. A 133
(2003), no. 5, 1193–1207. MR 2018332
(2004j:47130), http://dx.doi.org/10.1017/S0308210500002870
 [S]
S. Sheffield, ``Tug of war and the infinity Laplacian'', lecture presented at UC Berkeley, 2004.
 [A1]
 G. Aronsson, Minimization problems for the functional , Arkiv für Mate. 6 (1965), 3353. MR 0196551 (33:4738)
 [A2]
 G. Aronsson, Minimization problems for the functional . II, Arkiv für Mate. 6 (1966), 409431. MR 0203541 (34:3391)
 [A3]
 G. Aronsson, Extension of functions satisfying Lipschitz conditions, Arkiv für Mate. 6 (1967), 551561. MR 0217665 (36:754)
 [A4]
 G. Aronsson, On the partial differential equation , Arkiv für Mate. 7 (1968), 395425. MR 0237962 (38:6239)
 [A5]
 G. Aronsson, Minimization problems for the functional . III, Arkiv für Mate. 7 (1969), 509512. MR 0240690 (39:2035)
 [ACJ]
 G. Aronsson, M. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), American Mathematical Society. Bulletin. New Series, 41 (2004), 439505. MR 2083637 (2005k:35159)
 [B]
 E. N. Barron, Viscosity solutions and analysis in , in Nonlinear Analysis, Differential Equations and Control, Dordrecht 1999, 160. MR 1695005 (2001c:49045)
 [BJW]
 E. N. Barron, R. Jensen and C. Wang, The Euler equation and absolute minimizers of functionals, Arch. Rational Mech. Analysis 157 (2001), 255283. MR 1831173 (2002m:49006)
 [BP]
 H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis 9 (1972), 6374. MR 0293452 (45:2529)
 [CGG]
 Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Journal of Differential Geometry 33 (1991), 749786. MR 1100211 (93a:35093)
 [CIL]
 M. G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin American Math. Soc., 27 (1992), 167. MR 1118699 (92j:35050)
 [E1]
 L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Royal Society of Edinburgh 111A (1989), 359375. MR 1007533 (91c:35017)
 [E2]
 L. C. Evans, Regularity for fully nonlinear elliptic PDE and mean curvature motion (survey paper), in Viscosity Solutions and Applications, edited by I. CapuzzoDolcetta and P.L. Lions, Lecture Notes in Mathematics 1660, Springer, 1997. MR 1462701 (98f:35046)
 [ES]
 L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, Journal of Differential Geometry 33 (1991), 635681. MR 1100206 (92h:35097)
 [F]
 M. Friedlin, Functional Integration and Partial Differential Equations, Princeton University Press, Volume 109, Annals of Mathematics, 1985. MR 0833742 (87g:60066)
 [J]
 R. Jensen, Uniqueness of Lipschitz extensions minimizing the supnorm of the gradient, Arch. Rational Mech. Analysis 123 (1993), 5174. MR 1218686 (94g:35063)
 [KS]
 R.V. Kohn and S. Serfaty, A deterministic controlbased approach to motion by mean curvature, preprint, 2004.
 [LG]
 E. Le Gruyer, On absolutely minimizing Lipschitz extensions and the PDE , preprint, 2004.
 [LGA]
 E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Analysis, 29 (1998), 279292. MR 1617186 (99d:54008)
 [O]
 A. Oberman, Convergent difference schemes for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions, preprint.
 [PSSW]
 Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug of war and the infinity Laplacian, preprint.
 [P]
 M. Portilheiro, Weak solutions for equations defined by accretive operators I, Proceedings Royal Soc Edinburgh 133A (2003), 11931207. MR 2018332 (2004j:47130)
 [S]
 S. Sheffield, ``Tug of war and the infinity Laplacian'', lecture presented at UC Berkeley, 2004.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
35C99,
35J60,
49L20,
49L25
Retrieve articles in all journals
with MSC (2000):
35C99,
35J60,
49L20,
49L25
Additional Information
E. N. Barron
Affiliation:
Department of Mathematics and Statistics, Loyola University of Chicago, Chicago, Illinois 60626
Email:
ebarron@luc.edu
L. C. Evans
Affiliation:
Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
Email:
evans@math.berkeley.edu
R. Jensen
Affiliation:
Department of Mathematics and Statistics, Loyola University of Chicago, Chicago, Illinois 60626
Email:
rjensen@luc.edu
DOI:
http://dx.doi.org/10.1090/S0002994707043383
PII:
S 00029947(07)043383
Keywords:
Infinity Laplacian,
Aronsson equations,
tug of war games,
random evolutions
Received by editor(s):
July 15, 2005
Published electronically:
July 25, 2007
Additional Notes:
The first and third authors were supported in part by NSF Grant DMS0200169
The second author was supported in part by NSF Grant DMS0500452.
Article copyright:
© Copyright 2007 American Mathematical Society
