Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Geometry of regular modules over canonical algebras


Author: Grzegorz Bobinski
Journal: Trans. Amer. Math. Soc. 360 (2008), 717-742
MSC (2000): Primary 16G20; Secondary 14L30
DOI: https://doi.org/10.1090/S0002-9947-07-04174-8
Published electronically: August 30, 2007
MathSciNet review: 2346469
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify canonical algebras such that for every dimension vector of a regular module the corresponding module variety is normal (respectively, a complete intersection). We also prove that for the dimension vectors of regular modules normality is equivalent to irreducibility.


References [Enhancements On Off] (What's this?)

  • [1] M Barot and Jan Schröer, Module varieties over canonical algebras, J. Algebra 246 (2001), no. 1, 175-192. MR 1872616 (2003e:16013)
  • [2] Grzegorz Bobinski and Andrzej Skowronski, Geometry of modules over tame quasi-tilted algebras, Colloq. Math. 79 (1999), no. 1, 85-118. MR 1671811 (2000i:14067)
  • [3] Grzegorz Bobinski and Andrzej Skowronski, Geometry of periodic modules over tame concealed and tubular algebras, Algebr. Represent. Theory 5 (2002), no. 2, 187-200. MR 1909550 (2003d:16021)
  • [4] Klaus Bongartz, Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), no. 3, 461-469. MR 724715 (85i:16036)
  • [5] Klaus Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 69 (1994), no. 4, 575-611. MR 1303228 (96f:16016)
  • [6] Klaus Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), no. 2, 245-287. MR 1402728 (98e:16012)
  • [7] Klaus Bongartz, Some geometric aspects of representation theory, Algebras and Modules, I (Trondheim, 1996), 1998, pp. 1-27. MR 1648601 (99j:16005)
  • [8] William Crawley-Boevey and Jan Schröer, Irreducible components of varieties of modules, J. Reine Angew. Math. 553 (2002), 201-220. MR 1944812 (2004a:16020)
  • [9] Mátyás Domokos and Helmut Lenzing, Invariant theory of canonical algebras, J. Algebra 228 (2000), no. 2, 738-762. MR 1764590 (2001h:16016)
  • [10] Mátyás Domokos and Helmut Lenzing, Moduli spaces for representations of concealed-canonical algebras, J. Algebra 251 (2002), no. 1, 371-394. MR 1900290 (2003d:16016)
  • [11] Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, Representation of Algebras, and Vector Bundles (Lambrecht, 1985), 1987, pp. 265-297. MR 915180 (89b:14049)
  • [12] Christof Geiß, Geometric methods in representation theory of finite-dimensional algebras, Representation Theory of Algebras and Related Topics (Mexico City, 1994), 1996, pp. 53-63.
  • [13] Dieter Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2001), no. 2, 381-398. MR 1827736 (2002a:18014)
  • [14] Dieter Happel, Idun Reiten, and Sverre Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209 (97j:16009)
  • [15] Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, 1984. MR 768181 (86j:14006)
  • [16] Hanspeter Kraft, Geometric methods in representation theory, Representations of Algebras (Puebla, 1980), 1982, pp. 180-258. MR 672117 (84c:14007)
  • [17] Helmut Lenzing and José Antonio de la Peña, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc. (3) 78 (1999), no. 3, 513-540. MR 1674837 (2000c:16018)
  • [18] Markus Reineke, The monoid of families of quiver representations, Proc. London Math. Soc. (3) 84 (2002), no. 3, 663-685. MR 1888427 (2004d:16030)
  • [19] Claus Michael Ringel, The rational invariants of the tame quivers, Invent. Math. 58 (1980), no. 3, 217-239. MR 571574 (81f:16048)
  • [20] Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, 1984. MR 774589 (87f:16027)
  • [21] Andrzej Skowronski, On omnipresent tubular families of modules, Representation Theory of Algebras (Cocoyoc, 1994), 1996, pp. 641-657. MR 1388078 (97f:16032)
  • [22] Andrzej Skowronski and Jerzy Weyman, Semi-invariants of canonical algebras, Manuscripta Math. 100 (1999), no. 3, 391-403. MR 1726226 (2001d:16026)
  • [23] Detlef Voigt, Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Mathematics, vol. 592, Springer-Verlag, 1977. MR 0486168 (58:5949)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G20, 14L30

Retrieve articles in all journals with MSC (2000): 16G20, 14L30


Additional Information

Grzegorz Bobinski
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Email: gregbob@mat.uni.torun.pl

DOI: https://doi.org/10.1090/S0002-9947-07-04174-8
Keywords: Canonical algebra, module variety, normal variety, complete intersection
Received by editor(s): May 16, 2005
Received by editor(s) in revised form: October 4, 2005
Published electronically: August 30, 2007
Dedicated: Dedicated to the memory of Professor Stanisław Balcerzyk
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society