Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Auslander-Reiten translation in submodule categories

Authors: Claus Michael Ringel and Markus Schmidmeier
Journal: Trans. Amer. Math. Soc. 360 (2008), 691-716
MSC (2000): Primary 16G70; Secondary 18E30
Published electronically: September 5, 2007
MathSciNet review: 2346468
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Lambda $ be an artin algebra or, more generally, a locally bounded associative algebra, and $ \mathcal{S}(\Lambda )$ the category of all embeddings $ (A\subseteq B)$ where $ B$ is a finitely generated $ \Lambda $-module and $ A$ is a submodule of $ B$. Then $ \mathcal{S}(\Lambda )$ is an exact Krull-Schmidt category which has Auslander-Reiten sequences. In this manuscript we show that the Auslander-Reiten translation in $ \mathcal{S}(\Lambda )$ can be computed within $ \operatorname{mod}\,\Lambda $ by using our construction of minimal monomorphisms. If in addition $ \Lambda $ is uniserial, then any indecomposable nonprojective object in $ \mathcal{S}(\Lambda )$ is invariant under the sixth power of the Auslander-Reiten translation.

References [Enhancements On Off] (What's this?)

  • [ARS] M. Auslander, I. Reiten, S. O. Smalø: Representation Theory of Artin Algebras. Cambridge University Press (1995). MR 1314422 (96c:16015)
  • [AS] M. Auslander, S. O. Smalø: Almost split sequences in subcategories, Journal of Algebra, 69 (1981), 426-454. MR 617088 (82j:16048a)
  • [GR] P. Gabriel and A. V. Roiter: Representations of finite dimensional algebras (with a chapter by Bernhard Keller), in: Encyclopedia of mathematical Sciences 73, Algebra VIII, 1-177, Springer, Berlin 1992. MR 1239446 (94h:16001a)
  • [H] D. Happel: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Mathematical Society Lecture Notes series 119, ix+208pp, Cambridge University Press, Cambridge 1988. MR 935124 (89e:16035)
  • [RS1] C.M. Ringel, M. Schmidmeier: Invariant subspaces of nilpotent linear operators. I, J. Reine Angew. Mathematik (Crelle) (to appear), 1-55.
  • [RS2] C.M. Ringel, M. Schmidmeier: Submodule categories of wild representation type, Journal for Pure and Applied Algebra 205 (2006), 412-422. MR 2203624 (2006i:16025)
  • [S] A. Skowronski: Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc. 34 (1986), 245-264. MR 856509 (87m:16046)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G70, 18E30

Retrieve articles in all journals with MSC (2000): 16G70, 18E30

Additional Information

Claus Michael Ringel
Affiliation: Fakultät für Mathematik, Universität Bielefeld, P.O. Box 100131, D-33501 Bielefeld, Germany

Markus Schmidmeier
Affiliation: Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, Florida 33431-0991

Keywords: Auslander-Reiten sequences, approximations, triangulated categories
Received by editor(s): April 30, 2005
Received by editor(s) in revised form: September 30, 2005
Published electronically: September 5, 2007
Dedicated: Dedicated to Idun Reiten on the occasion of her 60$^{th}$ birthday
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society