Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On symplectic fillings of lens spaces


Author: Paolo Lisca
Journal: Trans. Amer. Math. Soc. 360 (2008), 765-799
MSC (2000): Primary 57R17; Secondary 53D35
DOI: https://doi.org/10.1090/S0002-9947-07-04228-6
Published electronically: September 18, 2007
MathSciNet review: 2346471
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \overline\xi_{\rm st}$ be the contact structure naturally induced on the lens space $ L(p,q)=S^3/\mathbb{Z}/p\mathbb{Z}$ by the standard contact structure $ \xi_{\rm st}$ on the three-sphere $ S^3$. We obtain a complete classification of the symplectic fillings of $ (L(p,q),\overline\xi_{\rm st})$ up to orientation-preserving diffeomorphisms. In view of our results, we formulate a conjecture on the diffeomorphism types of the smoothings of complex two-dimensional cyclic quotient singularities.


References [Enhancements On Off] (What's this?)

  • 1. W Barth, C Peters, A Van de Ven, Compact complex surfaces, Springer-Verlag, Berlin, 1984. MR 749574 (86c:32026)
  • 2. F Bonahon, Difféotopies des Espaces Lenticulaires, Topology 22 (1983) 305-314. MR 710104 (85d:57008)
  • 3. J A Christophersen, On the components and discriminant of the versal base space of cyclic quotient singularities, Singularity theory and its applications, Part I (Coventry, 1988/1989), 81-92, Lecture Notes in Math. 1462, Springer, Berlin, 1991. MR 1129026 (92j:32127)
  • 4. Y Eliashberg, Topological characterization of Stein manifolds of dimension $ >2$, Intern. Journal of Math. 1, No. 1 (1990) 29-46. MR 1044658 (91k:32012)
  • 5. Y Eliashberg, On symplectic manifolds with some contact properties, J. Diff. Geom. 33 (1991) 233-238. MR 1085141 (92g:57036)
  • 6. Y Eliashberg, Filling by holomorphic discs and its applications, London Math. Soc. Lecture Notes Series 151 (1991) 45- 67. MR 1171908 (93g:53060)
  • 7. Y Eliashberg, M Fraser, Classification of topologically trivial Legendrian knots. Geometry, topology, and dynamics (Montreal, PQ, 1995), 17-51, CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI, 1998. MR 1619122 (99f:57007)
  • 8. R Fintushel, RJ Stern, Rational blowdowns of smooth $ 4$-manifolds, J. Differential Geom. 46 (1997), no. 2, 181-235 MR 1484044 (98j:57047)
  • 9. E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000), no. 3, 615-689. MR 1779622 (2001i:53147)
  • 10. H Gluck, The embedding of two-spheres in the four-sphere, Bulletin of the Am. Math. Soc. 67 (1961) 586-589. MR 0131877 (24:A1724)
  • 11. RE Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no 2, 619-693. MR 1668563 (2000a:57070)
  • 12. M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347. MR 809718 (87j:53053)
  • 13. RE Gompf, A I Stipsicz, $ 4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999. MR 1707327 (2000h:57038)
  • 14. K Honda, On the classification of tight contact structures I: Lens spaces, solid tori, and $ T^2\times I$, Geom. Topol. 4 (2000), 309-368. MR 1786111 (2001i:53148)
  • 15. P Lisca, Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998), 103-116. MR 1633282 (99f:57038)
  • 16. P Lisca, On Lens Spaces and Their Symplectic Fillings, Math. Res. Lett. 11 (2004), no. 1, 13-22. MR 2046195 (2004m:57058)
  • 17. P Lisca, On symplectic fillings of lens spaces, talk at the conference Holomorphic Curves and Low-Dimensional Topology, Institute for Advanced Study, March 25-29, 2002.
  • 18. P Lisca, G Matic, Stein $ 4$-manifolds with boundary and contact structures, Top. and its Appl. 88 (1998) 55-66. MR 1634563 (99f:57037)
  • 19. D McDuff, The structure of Rational and Ruled symplectic $ 4$-manifolds, J. Am. Math. Soc. 3 (1990) 679-712. MR 1049697 (91k:58042)
  • 20. D McDuff, Singularities and positivity of intersections of $ J$-holomorphic curves. With an appendix by Gang Liu. Progr. Math. 117, ``Holomorphic curves in symplectic geometry'', 191-215, Birkhäuser, Basel, 1994. MR 1274930
  • 21. J D McCarthy, J G Wolfson, Symplectic gluing along hypersurfaces and resolution of isolated orbifold singularities, Invent. Math. 119 (1995), no. 1, 129-154. MR 1309973 (96b:57040)
  • 22. P Orlik, P Wagreich, Algebraic surfaces with $ k^*$-action, Acta Math. 138 (1977) 43-81. MR 0460342 (57:336)
  • 23. H Ohta, K Ono, Symplectic fillings of the link of simple elliptic singularities, J. Reine Angew. Math. 565 (2003) 183-205. MR 2024651 (2005b:53141)
  • 24. H Ohta, K Ono, Simple singularities and topology of symplectically filling $ 4$-manifold, Comment. Math. Helv. 74 (1999), no. 4, 575-590. MR 1730658 (2001b:57060)
  • 25. O Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974) 211-248. MR 0367276 (51:3518)
  • 26. J Stevens, On the versal deformation of cyclic quotient singularities, in Singularity theory and its applications, Part I (Coventry, 1988/1989), 302-319, Lecture Notes in Math. 1462, Springer, Berlin, 1991. MR 1129040 (93b:14061)
  • 27. M Symington, Symplectic rational blowdowns. J. Diff. Geom. 50 (1998) 505-518. MR 1690738 (2000e:57043)
  • 28. J Wahl, Smoothings of normal surface singularities. Topology 20 (1981) 219-246. MR 608599 (83h:14029)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57R17, 53D35

Retrieve articles in all journals with MSC (2000): 57R17, 53D35


Additional Information

Paolo Lisca
Affiliation: Dipartimento di Matematica “L. Tonelli”, Università di Pisa, I-56127 Pisa, Italy
Email: lisca@dm.unipi.it

DOI: https://doi.org/10.1090/S0002-9947-07-04228-6
Received by editor(s): October 11, 2005
Published electronically: September 18, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society