Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Some new results in multiplicative and additive Ramsey theory

Authors: Mathias Beiglböck, Vitaly Bergelson, Neil Hindman and Dona Strauss
Journal: Trans. Amer. Math. Soc. 360 (2008), 819-847
MSC (2000): Primary 05D10; Secondary 22A15
Published electronically: May 16, 2007
MathSciNet review: 2346473
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There are several notions of largeness that make sense in any semigroup, and others such as the various kinds of density that make sense in sufficiently well-behaved semigroups including $ (\mathbb{N},+)$ and $ (\mathbb{N},\cdot)$. It was recently shown that sets in $ \mathbb{N}$ which are multiplicatively large must contain arbitrarily large geoarithmetic progressions, that is, sets of the form $ \big\{r^j(a+id):i,j\in\{0,1,\dotsc,k\}\big\}$, as well as sets of the form $ \big\{b(a+id)^j:i,j\in\{0,1,\dotsc,k\}\big\}$. Consequently, given a finite partition of $ \mathbb{N}$, one cell must contain such configurations. In the partition case we show that we can get substantially stronger conclusions. We establish some combined additive and multiplicative Ramsey theoretic consequences of known algebraic results in the semigroups $ (\beta\mathbb{N},+)$ and $ (\beta\mathbb{N},\cdot)$, derive some new algebraic results, and derive consequences of them involving geoarithmetic progressions. For example, we show that given any finite partition of $ \mathbb{N}$ there must be, for each $ k$, sets of the form $ \big\{b(a+id)^j:i,j\in\{0,1,\dotsc,k\}\big\}$ together with $ d$, the arithmetic progression $ \big\{a+id:i\in\{0,1,\dotsc,k\}\big\}$, and the geometric progression $ \big\{bd^j:j\in\{0,1,\dotsc,k\}\big\}$ in one cell of the partition. More generally, we show that, if $ S$ is a commutative semigroup and $ {\mathcal F}$ a partition regular family of finite subsets of $ S$, then for any finite partition of $ S$ and any $ k\in \mathbb{N}$, there exist $ b,r\in S$ and $ F\in {\mathcal F}$ such that $ rF\cup\{b(rx)^j:x \in F,j\in\{0,1,2,\ldots ,k\}\}$ is contained in a cell of the partition. Also, we show that for certain partition regular families $ {\mathcal F}$ and $ {\mathcal G}$ of subsets of $ \mathbb{N}$, given any finite partition of $ \mathbb{N}$ some cell contains structures of the form $ B \cup C \cup B\cdot C$ for some $ B\in {\mathcal F}, C\in {\mathcal G}$.

References [Enhancements On Off] (What's this?)

  • 1. V. Bergelson, Multiplicatively large sets and ergodic Ramsey theory, Israel J. Math. 148 (2005), 23-40. MR 2191223
  • 2. V. Bergelson, A. Blass, and N. Hindman, Partition theorems for spaces of variable words, Proc. London Math. Soc. 68 (1994), 449-476. MR 1262304 (95i:05107)
  • 3. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's Theorems, J. Amer. Math. Soc. 9 (1996), 725-753. MR 1325795 (96j:11013)
  • 4. T. Carlson, N. Hindman, and D. Strauss, Ramsey theoretic consequences of some new results about algebra in the Stone-Cech compactification, Integers 5(2) (2005) #A04, pp. 1-26. MR 2192082 (2006k:54031)
  • 5. W. Deuber, Partitionen und lineare Gleichungssysteme, Math. Zeit. 133 (1973), 109-123. MR 0325406 (48:3753)
  • 6. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d'Analyse Math. 31 (1977), 204-256. MR 0498471 (58:16583)
  • 7. H. Furstenberg, Recurrence in ergodic theory and combinatorical number theory, Princeton University Press, Princeton, 1981. MR 603625 (82j:28010)
  • 8. H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, J. Anal. Math. 57 (1991), 64-119. MR 1191743 (94f:28020)
  • 9. H. Furstenberg, Y. Katznelson, and D. Ornstein, The ergodic theoretical proof of Szemerédi's Theorem, Bull. Amer. Math. Soc. 7 (1982), 527-552. MR 670131 (84b:28016)
  • 10. W. Gowers, A new proof of Szemerédi's Theorem, Geom. Funct. Anal. 11 (2001), 465-588. MR 1844079 (2002k:11014)
  • 11. R. Graham, B. Rothschild, and J. Spencer, Ramsey theory, Wiley, New York, 1990. MR 1044995 (90m:05003)
  • 12. A. Hales and R. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229. MR 0143712 (26:1265)
  • 13. N. Hindman, Partitions and sums and products of integers, Trans. Amer. Math. Soc. 247 (1979), 227-245. MR 517693 (80b:10022)
  • 14. N. Hindman, Problems and new results in the algebra of $ \beta S$ and Ramsey theory, in Unsolved problems on mathematics for the $ 21^{{st}}$ Century, J. Abe and S. Tanaka, eds., IOS Press, Amsterdam (2001), 295-305. MR 1896684 (2004a:22003)
  • 15. N. Hindman, I. Leader, and D. Strauss, Image partition regular matrices - bounded solutions and preservations of largeness, Discrete Math. 242 (2002), 115-144. MR 1874760 (2002j:05146)
  • 16. N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification: Theory and applications, de Gruyter, Berlin, 1998. MR 1642231 (99j:54001)
  • 17. B. de Mathan, Numbers contravening a condition in density modulo $ 1$, Acta Math. Acad. Sci. Hungar. 36 (1980), 237-241. MR 612195 (82e:10088)
  • 18. A. Pollington, On the density of the sequence $ \{n\sb{k}\xi\}$, Illinois J. Math. 23 (1979), 511-515. MR 540398 (80i:10066)
  • 19. R. Rado, Verallgemeinerung Eines Satzes von van der Waerden mit Anwendungen auf ein Problem der Zahlentheorie, Sonderausg. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse 17 (1933), 1-10.
  • 20. R. Rado, Studien zur Kombinatorik, Math. Zeit. 36 (1933), 242-280.
  • 21. E. Szemerédi, On sets of integers containing no $ k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199-245. MR 0369312 (51:5547)
  • 22. B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskunde 19 (1927), 212-216.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 05D10, 22A15

Retrieve articles in all journals with MSC (2000): 05D10, 22A15

Additional Information

Mathias Beiglböck
Affiliation: Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien, Austria

Vitaly Bergelson
Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210

Neil Hindman
Affiliation: Department of Mathematics, Howard University, Washington, DC 20059

Dona Strauss
Affiliation: Mathematics Centre, University of Hull, Hull HU6 7RX, United Kingdom

Keywords: Ramsey theory, central sets, piecewise syndetic
Received by editor(s): October 21, 2005
Published electronically: May 16, 2007
Additional Notes: The first author thanks the Austrian Science Foundation FWF for its support through Projects nos. S8312 and P17627-N12. He also thanks Ohio State University for its hospitality in the spring of 2004 while much of this research was being conducted.
The second author acknowledges support received from the National Science Foundation via grant DMS-0345350.
The third author acknowledges support received from the National Science Foundation via grants DMS-0243586 and DMS-0554803.
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society