Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A characterization of homeomorphic Bernoulli trial measures


Author: Andrew Q. Yingst
Journal: Trans. Amer. Math. Soc. 360 (2008), 1103-1131
MSC (2000): Primary 28D05; Secondary 37B05, 28C15
DOI: https://doi.org/10.1090/S0002-9947-07-04431-5
Published electronically: September 25, 2007
MathSciNet review: 2346485
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give conditions which, given two Bernoulli trial measures, determine whether there exists a homeomorphism of Cantor space which sends one measure to the other, answering a question of Oxtoby. We then provide examples, relating these results to the notions of good and refinable measures on Cantor space.


References [Enhancements On Off] (What's this?)

  • 1. E. Akin, Good measures on Cantor space, Trans. Amer. Math. Soc. 357 (2005), 2681-2722. MR 2139523 (2006e:37003)
  • 2. S. Alpern and V. S. Prasad, Typical dynamics of volume preserving homeomorphisms, Cambridge Tracts in Mathematics 139 (2000). MR 1826331 (2002i:37006)
  • 3. T. D. Austin, A pair of non-homeomorphic measures on the Cantor set, Math. Proc. Camb. Phil. Soc. 142 (2007), 103-110. MR 2296394
  • 4. E. Glasner and B. Weiss, Weak orbit equivalence of minimal Cantor systems, Internat. J. Math. 6 (1995), 559-579. MR 1339645 (96g:46054)
  • 5. K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973), 419-426. MR 0437489 (55:10419a)
  • 6. -, Sur les polynômes à coefficients entiers et de discriminant donné. II, Publ. Math. Debrecen 21 (1974), 125-144. MR 0437490 (55:10419b)
  • 7. F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z. 9 (1921), 74-109. MR 1544453
  • 8. K. J. Huang, Algebraic numbers and topologically equivalent measures in the Cantor set, Proc. Amer. Math. Soc. 96 (1986), 560-562. MR 826481 (87b:11100)
  • 9. G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953. MR 0057370 (15:217a)
  • 10. R. D. Mauldin, Problems in topology arising from analysis, (1990), 617-629. MR 1078668
  • 11. F. J. Navarro-Bermudez, Topologically equivalent measures in the Cantor space, Proc. Amer. Math. Soc. 77 (1979), 229-236. MR 542090 (80k:28017)
  • 12. F. J. Navarro-Bermudez and J. C. Oxtoby, Four topologically equivalent measures in the Cantor space, Proc. Amer. Math. Soc. 104 (1988), 859-860. MR 939966 (90c:28020)
  • 13. J. C. Oxtoby, Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc. 24 (1970), 419-423. MR 0260961 (41:5581)
  • 14. J. C. Oxtoby and V. S. Prasad, Homeomorphic measures in the Hilbert cube, Pac. J. Math. 77 (1978), 483-497. MR 510936 (80h:28006)
  • 15. J. C. Oxtoby and S. M. Ulam, Measure preserving homeomorphisms and metrical transitivity, Ann. Math. 42 (1941), 874-920. MR 0005803 (3:211b)
  • 16. R. G. E. Pinch, Binomial equivalence of algebraic numbers, J. Indian Math. Soc. (N.S.) 58 (1992), 33-37. MR 1207024 (94a:11160)
  • 17. G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer, 1972.
  • 18. R. D. Mauldin, R. Dougherty and A. Yingst, On homeomorphic Bernoulli measures on the Cantor space, to appear in Trans. Amer. Math. Soc., 16 pages.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 28D05, 37B05, 28C15

Retrieve articles in all journals with MSC (2000): 28D05, 37B05, 28C15


Additional Information

Andrew Q. Yingst
Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
Address at time of publication: Department of Mathematics, University of South Carolina, P.O. Box 889, Lancaster, South Carolina 29721
Email: andy.yingst@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-07-04431-5
Received by editor(s): July 17, 2006
Published electronically: September 25, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society