Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets


Authors: S. V. Borodachov, D. P. Hardin and E. B. Saff
Journal: Trans. Amer. Math. Soc. 360 (2008), 1559-1580
MSC (2000): Primary 11K41, 70F10, 28A78; Secondary 78A30, 52A40
DOI: https://doi.org/10.1090/S0002-9947-07-04416-9
Published electronically: October 17, 2007
MathSciNet review: 2357705
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a closed $ d$-rectifiable set $ A$ embedded in Euclidean space, we investigate minimal weighted Riesz energy points on $ A$; that is, $ N$ points constrained to $ A$ and interacting via the weighted power law potential $ V=w(x,y)\left\vert x-y\right\vert^{-s}$, where $ s>0$ is a fixed parameter and $ w$ is an admissible weight. (In the unweighted case ($ w\equiv 1$) such points for $ N$ fixed tend to the solution of the best-packing problem on $ A$ as the parameter $ s\to \infty$.) Our main results concern the asymptotic behavior as $ N\to \infty$ of the minimal energies as well as the corresponding equilibrium configurations. Given a distribution $ \rho(x)$ with respect to $ d$-dimensional Hausdorff measure on $ A$, our results provide a method for generating $ N$-point configurations on $ A$ that are ``well-separated'' and have asymptotic distribution $ \rho (x)$ as $ N\to \infty$.


References [Enhancements On Off] (What's this?)

  • 1. N.N. Andreev, An extremal property of the icosahedron, East J. Approx. 2 (1996), no. 4, 459-462. MR 1426716 (97m:52022)
  • 2. N.N. Andreev, On positions of points with minimal energy, Papers of the V.A. Steklov Math. Institute. 219 (1997), 27-31. MR 1642295 (99i:52019)
  • 3. J. Benedetto, M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003), 357-385. MR 1968126 (2004c:42059)
  • 4. S.V. Borodachov, On minimization of the energy of varying range interactions on one- and multidimensional conductors, Ph.D. Thesis, Vanderbilt University (2006).
  • 5. M. Bowick, D.R. Nelson, A. Travesset, Interacting topological defects in frozen topographies, Phys. Rev. B 62 (2000), 8738-8751.
  • 6. J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer Verlag, New York: 3rd ed., 1999. MR 1662447 (2000b:11077)
  • 7. B.E.J. Dahlberg, On the distribution of Fekete points, Duke Math. J. 45 (1978), 537-542. MR 507457 (80c:31003)
  • 8. S. Damelin, V. Maymeskul, On mesh norm of $ s$-extremal configurations on compact sets in $ \mathbb{R}^n$, Constructive Functions Tech-04, 2004 (Atlanta, GA).
  • 9. P.D. Dragnev, D.A. Legg, D.W. Townsend, Discrete logarithmic energy on the sphere, Pacific J. Math. 207 (2002), no. 2, 345-358. MR 1972249 (2004c:52015)
  • 10. H. Federer, Geometric measure theory, Springer-Verlag, Berlin-Heidelberg-New York, 1969, 680 pages. MR 0257325 (41:1976)
  • 11. L. Fejes Toth, Regular Figures, Pergamon Press, Berlin-G $ {\rm\ddot{o}}$ttingen-Heidelberg, 1953.
  • 12. D.P. Hardin, E.B. Saff, Minimal Riesz energy point configurations for rectifiable $ d$-dimensional manifolds, Adv. Math. 193 (2005), 174-204. MR 2132763 (2005m:49006)
  • 13. D.P. Hardin, E.B. Saff, Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (2004), no. 10, 1186-1194. MR 2104914 (2006a:41049)
  • 14. A.V. Kolushov, V.A. Yudin, On the Korkin-Zolotarev construction, Discrete Mathematics 6 (1994), no. 1, 155-157 (in Russian). MR 1273240 (95j:52033)
  • 15. A.V. Kolushov, V.A. Yudin, Extremal depositions of points on the sphere, Anal. Math. 23 (1997), no. 1, 25-34. MR 1630001 (99f:41039)
  • 16. A.B.J. Kuijlaars, E.B. Saff, Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc. 350 (1998), no. 2, 523-538. MR 1458327 (98e:11092)
  • 17. P. Mattila, Geometry of sets and measures in Eucledian spaces. Fractals and Rectifiability, Cambridge Univ. Press, 1995, 344 pages. MR 1333890 (96h:28006)
  • 18. N.S. Landkof, Foundations of modern potential theory. Springer-Verlag, Berlin-Heidelber-New York, 1972, 426 pages. MR 0350027 (50:2520)
  • 19. A. Martinez-Finkelstein, V. Maymeskul, E.A. Rakhmanov, E.B. Saff, Asymptotics for minimal discrete Riesz energy on curves in $ \mathbb{R}^d$ Canad. Math. J., 56 (2004), 529-552. MR 2057285 (2005a:31010)
  • 20. T.W. Melnyk, O. Knop, and W. R. Smith, Extremal Arrangements of Points and Unit Charges on a Sphere: Equilibrium Configurations Revisited, Canad. J. Chem. 55, (1977), 1745-1761. MR 0444497 (56:2848)
  • 21. I.H. Sloan, R.S. Womersley, Extremal systems of points and numerical integration on the Sphere, Adv. Comp. Math. 21 (2004), 102-125. MR 2065291 (2005b:65024)
  • 22. S. Smale, Mathematical problems for the next century, Mathematical Intelligencer, 20 (1998), 7-15. MR 1631413 (99h:01033)
  • 23. V.A. Yudin, The minimum of potential energy of a system of point charges, Discrete Math. Appl. 3 (1993), no. 1, 75-81. MR 1181534 (93f:31008)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11K41, 70F10, 28A78, 78A30, 52A40

Retrieve articles in all journals with MSC (2000): 11K41, 70F10, 28A78, 78A30, 52A40


Additional Information

S. V. Borodachov
Affiliation: Department of Mathematics, Center for Constructive Approximation, Vanderbilt University, Nashville, Tennessee 37240
Address at time of publication: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
Email: sergiy.v.borodachov@vanderbilt.edu, borodasv@math.gatech.edu

D. P. Hardin
Affiliation: Department of Mathematics, Center for Constructive Approximation, Vanderbilt University, Nashville, Tennessee 37240
Email: doug.hardin@vanderbilt.edu

E. B. Saff
Affiliation: Department of Mathematics, Center for Constructive Approximation, Vanderbilt University, Nashville, Tennessee 37240
Email: edward.b.saff@vanderbilt.edu

DOI: https://doi.org/10.1090/S0002-9947-07-04416-9
Keywords: Minimal discrete Riesz energy, best-packing, Hausdorff measure, rectifiable sets, non-uniform distribution of points, power law potential, separation radius
Received by editor(s): February 10, 2006
Published electronically: October 17, 2007
Additional Notes: The research of the first author was conducted as a graduate student under the supervision of E.B. Saff and D. P. Hardin at Vanderbilt University.
The research of the second author was supported, in part, by the U. S. National Science Foundation under grants DMS-0505756 and DMS-0532154.
The research of the third author was supported, in part, by the U. S. National Science Foundation under grant DMS-0532154.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society