Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Conformal energy, conformal Laplacian, and energy measures on the Sierpinski gasket

Authors: Jonas Azzam, Michael A. Hall and Robert S. Strichartz
Journal: Trans. Amer. Math. Soc. 360 (2008), 2089-2130
MSC (2000): Primary 28A80
Published electronically: November 28, 2007
MathSciNet review: 2366976
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On the Sierpinski Gasket (SG) and related fractals, we define a notion of conformal energy $ \mathcal{E}_\varphi$ and conformal Laplacian $ \Delta_{\varphi}$ for a given conformal factor $ \varphi$, based on the corresponding notions in Riemannian geometry in dimension $ n\neq2$. We derive a differential equation that describes the dependence of the effective resistances of $ \mathcal{E}_\varphi$ on $ \varphi$. We show that the spectrum of $ \Delta_{\varphi}$ (Dirichlet or Neumann) has similar asymptotics compared to the spectrum of the standard Laplacian, and also has similar spectral gaps (provided the function $ \varphi$ does not vary too much). We illustrate these results with numerical approximations. We give a linear extension algorithm to compute the energy measures of harmonic functions (with respect to the standard energy), and as an application we show how to compute the $ L^{p}$ dimensions of these measures for integer values of $ p\geq2$. We derive analogous linear extension algorithms for energy measures on related fractals.

References [Enhancements On Off] (What's this?)

  • 1. M. T. Barlow, R. F. Bass, and T. Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces, J. Math. Soc. Japan 58 (2006), 485-519. MR 2228569 (2007f:60064)
  • 2. O. Ben-Bassat, R. S. Strichartz, and A. Teplyaev, What is not in the domain of the Laplacian on a Sierpinski gasket type fractal, J. Funct. Anal. 166 (1999), 197-217. MR 1707752 (2001e:31016)
  • 3. B. Bockelman and R. S. Strichartz, Partial differential equations on products of Sierpinski gaskets.
  • 4. M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Anal. 1 (1992), 1-35. MR 1245223 (95b:31009)
  • 5. M. Hino, On singularity of energy measures on self-similar sets, Probab. Theory Related Fields 132 (2005), 265-290. MR 2199293
  • 6. M. Hino and K. Nakahara, On singularity of energy measures on self-similar sets II, Bull. London Math. Soc. 38 (2006), 1019-1032. MR 2285256
  • 7. J. Kigami, Harmonic metric and Dirichlet form on the Sierpinski gasket, Asymptotic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto 1990) (K. D. Elworthy and N. Ikeda, eds.), 283, Longman Sci. Tech., 1993, pp. 201-218. MR 1354156 (96m:31014)
  • 8. -, Analysis on fractals, Cambridge University Press, New York, 2001. MR 1840042 (2002c:28015)
  • 9. -, Harmonic analysis for resistance forms, J. Funct. Anal. 204 (2003), 399-444. MR 2017320 (2004m:31010)
  • 10. J. Kigami and M. L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys. 158 (1993), 93-125. MR 1243717 (94m:58225)
  • 11. S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci. 25 (1989), 659-680. MR 1025071 (91m:60142)
  • 12. -, Lecture on diffusion process on nested fractals, Lecture Notes in Math. 1567 (1993).
  • 13. R. Myers, R. S. Strichartz, and A. Taplyaev, Dirichlet forms on the Sierpinski gasket, Pacific J. Math 217 (2004), 149-174. MR 2105771 (2005k:31028)
  • 14. K. A. Okoudjou and R. S. Strichartz, Asymptotics of eigenvalue clusters for Schrödinger operators on the Sierpinski gasket, Preprint.
  • 15. T. Shima, On eigenvalue problems for the random walks on the Sierpinski pre-gaskets, Japan J. Indust. Appl. Math. 8 (1991), 127-141. MR 1093832 (92g:60094)
  • 16. -, On eigenvalue problems for Laplacians on p.c.f. self-similar sets, Japan J. Indust. Appl. Math. 13 (1996), 1-23. MR 1377456 (97f:28028)
  • 17. R. S. Strichartz, Self-similar measures and their Fourier transforms. III, Indiana Univ. Math. J. 42 (1993), 367-411. MR 1237052 (94j:42025)
  • 18. -, Analysis on fractals, Notices Amer. Math. Soc. 46 (1999), 1199-1208. MR 1715511 (2000i:58035)
  • 19. -, Function spaces on fractals, J. Funct. Anal. 198 (2003), 48-83. MR 1962353 (2003m:46058)
  • 20. -, Analysis on products of fractals, Trans. Amer. Math. Soc. 357 (2005), 571-615. MR 2095624 (2005m:31016)
  • 21. -, Laplacians on fractals with spectral gaps have nice Fourier series, Math. Research Letters 12 (2005), 269-274. MR 2150883 (2006e:28013)
  • 22. -, Differential equations on fractals: A tutorial, Princeton University Press, Princeton, NJ, 2006. MR 2246975 (2007f:35003)
  • 23. A. Taplyaev, Harmonic coordinates on fractals with finitely ramified cell structure, Preprint.
  • 24. -, Gradients on fractals, J. Funct. Anal. 174 (2000), 128-154. MR 1761365 (2001h:31012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 28A80

Retrieve articles in all journals with MSC (2000): 28A80

Additional Information

Jonas Azzam
Affiliation: Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68588
Address at time of publication: Department of Mathematics, UCLA, Los Angeles, California 90095

Michael A. Hall
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
Address at time of publication: Department of Mathematics, UCLA, Los Angeles, California 90095

Robert S. Strichartz
Affiliation: Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853

Received by editor(s): March 27, 2006
Published electronically: November 28, 2007
Additional Notes: The first and second authors were supported by the National Science Foundation through the Research Experiences for Undergraduates (REU) program at Cornell.
The third author was supported in part by the National Science Foundation, grant DMS-0140194.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society