Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Constructing tilting modules


Authors: Otto Kerner and Jan Trlifaj
Journal: Trans. Amer. Math. Soc. 360 (2008), 1907-1925
MSC (2000): Primary 16E30, 16G10, 16G30; Secondary 16D50, 18E40
DOI: https://doi.org/10.1090/S0002-9947-07-04392-9
Published electronically: October 30, 2007
MathSciNet review: 2366968
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the structure of (infinite dimensional) tilting modules over hereditary artin algebras. For connected algebras of infinite representation type with Grothendieck group of rank $ n$, we prove that for each $ 0 \leq i < n-1$, there is an infinite dimensional tilting module $ T_i$ with exactly $ i$ pairwise non-isomorphic indecomposable finite dimensional direct summands. We also show that any stone is a direct summand in a tilting module. In the final section, we give explicit constructions of infinite dimensional tilting modules over iterated one-point extensions.


References [Enhancements On Off] (What's this?)

  • 1. L. ANGELERI UGEL AND F. COELHO, Infinitely generated complements to partial tilting modules, Math. Proc. Camb. Phil. Soc. 132 (2002), 89-96. MR 1866326 (2003i:16001)
  • 2. L. ANGELERI UGEL, A. TONOLO AND J. TRLIFAJ, Tilting preenvelopes and cotilting precovers, Alg. Repr. Theory 4 (2001), 155-170. MR 1834843 (2002e:16010)
  • 3. I.ASSEM, Torsion theories induced by tilting modules, Canad J. Math. 36 (1984), 899-913. MR 762747 (86j:16022)
  • 4. I.ASSEM AND O. KERNER, Constructing torsion pairs, J. Algebra 185 (1996), 19-41. MR 1409972 (97f:16024)
  • 5. I. ASSEM, D. SIMSON AND A. SKOWRONSKI, Elements of Representation Theory of Associative Algebras I: Techniques of Representation Theory, London Math. Soc. Studfent Texts 65, Cambridge Univ. Press, Cambridge 2006. MR 2197389 (2006j:16020)
  • 6. M. AUSLANDER, I. REITEN AND S. SMALø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge 1994. MR 1314422 (96c:16015)
  • 7. M. AUSLANDER AND S. SMALø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454. MR 617088 (82j:16048a)
  • 8. D. BAER, Wild hereditary artin algebras and linear methods, Manucripta Math. 55 (1986), 69-82. MR 828411 (87i:16054)
  • 9. S.BAZZONI AND D.HERBERA, One dimensional tilting modules are of finite type.
  • 10. K. BONGARTZ, Tilted algebras, in Representations of Algebras, Lect. Notes in Math., Vol. 903, Springer, Berlin 1981, 17-32. MR 654701 (83g:16053)
  • 11. S. BRENNER AND M.C.R. BUTLER, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in Representation Theory II, Lect. Notes in Math., Vol. 832, Springer, Berlin 1980, 103-169. MR 607151 (83e:16031)
  • 12. R.COLPI AND C.MENINI, On the structure of $ \ast$-modules, J.Algebra 158 (1993), 400-419. MR 1226797 (94i:16003)
  • 13. R.COLPI AND J.TRLIFAJ, Tilting modules and tilting torsion theories, J.Algebra 178 (1995), 614-634. MR 1359905 (97e:16003)
  • 14. W. CRAWLEY-BOEVEY, Modules of finite length over their endomorphism rings, in Representation of Algebras and Related Topics, London Math. Soc. LNS 168, Cambridge 1992, 127-184. MR 1211479 (94h:16018)
  • 15. W. CRAWLEY-BOEVEY, Infinite dimensional modules in the representation theory of finite dimensional algebras, in Algebras and Modules I, Canad. Math. Soc. Conf. Proc., Vol. 23, AMS, Providence 1998, 29-54. MR 1648602 (99m:16016)
  • 16. W. GEIGLE AND H. LENZING, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343. MR 1140607 (93b:16011)
  • 17. D. HAPPEL AND C.M. RINGEL, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. MR 675063 (84d:16027)
  • 18. D. HAPPEL AND L.UNGER, Almost complete tilting modules, Proc. Amer. Math. Soc. 107 (1989), 603-610. MR 984791 (90f:16026)
  • 19. M. HOSHINO, On splitting torsion theories induced by tilting modules, Com. Algebra 11 (1983), 427-439. MR 689417 (85b:16028)
  • 20. O. KERNER, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. MR 989917 (90d:16025)
  • 21. O. KERNER, Universal short exact sequences for torsion theories, in Topics in algebra, Banach Cent. Publ. Vol 26, PWN Polish-Scientific-Publishers, Warsow 1990, 317-326. MR 1171241 (93h:16019)
  • 22. O. KERNER, Exceptional components of wild hereditary algebras, J. Algebra 152 (1992), 184-206. MR 1190411 (94b:16018)
  • 23. O. KERNER, Representations of wild quivers, in Representation Theory of Algebras and Related Topics, Can. Math. Soc. Conf. Proc., Vol.19, AMS, Providence, 1996, 65-107. MR 1388560 (97e:16028)
  • 24. O. KERNER AND F. LUKAS, Elementary modules, Math. Z. 223 (1996), 421-434. MR 1417853 (98f:16011)
  • 25. O. KERNER AND J. TRLIFAJ, Tilting classes over wild hereditary algebras, J. Algebra 290 (2005), 538-556. MR 2153267 (2006d:16020)
  • 26. H. KRAUSE, The spectrum of a module category, Memoirs Amer. Math. Soc. 707 (2001). MR 1803703 (2001k:16010)
  • 27. H. KRAUSE AND M.SAORIN, On minimal approximations of modules, Contemp. Math. 229 (1998), 227-236. MR 1676223 (99m:16002)
  • 28. F. LUKAS, Infinite dimensional modules over hereditary algebras, J. London Math. Soc. 44 (1991), 401-419. MR 1149004 (93b:16021)
  • 29. F. LUKAS, Elementare Moduln über wilden erblichen Algebren, Ph.D. Thesis, Düsseldorf, 1992.
  • 30. C.M. RINGEL, Finite dimensional hereditary algebras of wild representation type, Math.Z. 161 (1978), 235-255. MR 501169 (80c:16017)
  • 31. C.M. RINGEL, Infinite dimensional representations of finite dimensional hereditary algebras, Symposia Math. 23 (1979), Academic Press, 321-412. MR 565613 (81i:16032)
  • 32. C.M. RINGEL, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, Vol. 1099, Springer, Berlin, 1984. MR 774589 (87f:16027)
  • 33. C.M. RINGEL, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chin. Ann. Math. 9B (1988), 1-18. MR 943675 (89e:16036)
  • 34. H. STRAUSS, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66. MR 1136894 (92m:16013)
  • 35. J. TRLIFAJ, Cotorsion theories induced by tilting and cotilting modules, Contemp. Math. 273 (2001), 285-300. MR 1817171 (2001m:16012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16E30, 16G10, 16G30, 16D50, 18E40

Retrieve articles in all journals with MSC (2000): 16E30, 16G10, 16G30, 16D50, 18E40


Additional Information

Otto Kerner
Affiliation: Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstr.1, 40225 Düsseldorf, Germany

Jan Trlifaj
Affiliation: Faculty of Mathematics and Physics, Department of Algebra, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic

DOI: https://doi.org/10.1090/S0002-9947-07-04392-9
Received by editor(s): November 29, 2005
Published electronically: October 30, 2007
Additional Notes: This research was done during visits of the first author to Charles University, Prague, and of the second author to Heinrich Heine University, Düsseldorf, within the bilateral university exchange program
The second author was supported by grants GAUK 448/2004/B-MAT and MSM 0021620839
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society