Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Approximation theorems for the propagators of higher order abstract Cauchy problems


Authors: Jin Liang, Rainer Nagel and Ti-Jun Xiao
Journal: Trans. Amer. Math. Soc. 360 (2008), 1723-1739
MSC (2000): Primary 34G10; Secondary 35R20, 47D09
DOI: https://doi.org/10.1090/S0002-9947-07-04551-5
Published electronically: November 26, 2007
MathSciNet review: 2366960
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we present two quite general approximation theorems for the propagators of higher order (in time) abstract Cauchy problems, which extend largely the classical Trotter-Kato type approximation theorems for strongly continuous operator semigroups and cosine operator functions. Then, we apply the approximation theorems to deal with the second order dynamical boundary value problems.


References [Enhancements On Off] (What's this?)

  • 1. K. T. Andrews, K. L. Kuttler, and M. Shillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl. 197 (1996), 781-795. MR 1373080 (96m:34116)
  • 2. W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs Math. 96, Birkhäuser Verlag, 2001. MR 1886588 (2003g:47072)
  • 3. H. T. Banks and D. J. Inman, On damping mechanisms in beams, ASME Trans. 58 (1991), 716-723.
  • 4. A. Batkai and K.-J. Engel, Abstract wave equations with generalized Wentzell boundary conditions, J. Differential Equations 207 (2004), 1-20. MR 2100812 (2005g:34124)
  • 5. R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976. MR 0460842 (57:834)
  • 6. V. Casarino, K.-J. Engel, R. Nagel, and G. Nickel, A semigroup approach to boundary feedback systems, Integral Equations Operator Theory 47 (2003), 289-306. MR 2012840 (2004j:34128)
  • 7. K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, GTM 194, Springer-Verlag, Berlin, New York, 2000. MR 1721989 (2000i:47075)
  • 8. J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Part. Diff. Equations 18 (1993), 1309-1364. MR 1233197 (94g:35112)
  • 9. H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Elsevier Science Publishers B. V., Amsterdam, 1985. MR 797071 (87b:34001)
  • 10. A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, $ C\sb 0$-semigroups generated by second order differential operators with general Wentzell boundary conditions, Proc. Amer. Math. Soc. 128 (2000), 1981-1989. MR 1695147 (2000m:47054)
  • 11. A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Generalized Wentzell boundary conditions and analytic semigroups in $ C[0,1]$, In: Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), 125-131, Progr. Nonlinear Diff. Equations Appl. 42, Birkhäuser, Basel, 2000. MR 1788874 (2001h:47061)
  • 12. A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evolution Equations 2 (2002), 1-19. MR 1890879 (2003b:35089)
  • 13. A. Favini and E. Obrecht, Conditions for parabolicity of second order abstract differential equations, Diff. Integral Equations 4 (1991), 1005-1022. MR 1123349 (92m:47078)
  • 14. C. L. Frota and J. A. Goldstein, Some nonlinear wave equations with acoustic boundary conditions, J. Differential Equations 164 (2000), 92-109. MR 1761418 (2001h:35126)
  • 15. J. A. Goldstein, On the convergence and approximation of cosine functions, Aequationes Math. 10 (1974), 201-205. MR 0358435 (50:10901)
  • 16. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Math. Monographs, Oxford Univ. Press, New York, 1985. MR 790497 (87c:47056)
  • 17. C. G. Gal, G. R. Goldstein, and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations, J. Evolution Equations 3 (2003), 623-635. MR 2058054 (2005g:35188)
  • 18. K. Ito and F. Kappel,, The Trotter-Kato theorem and approximation of PDEs, Math. Comp. 67 (1998), 21-44. MR 1443120 (98e:47060)
  • 19. T. Kato, Remarks on pseudo-resolvents and infinitesimal generators of semi-groups, Proc. Japan Acad. 35 (1959), 467-468. MR 0117570 (22:8347)
  • 20. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966. MR 0203473 (34:3324)
  • 21. M. Kramar, D. Mugnolo, and R. Nagel, Theory and applications of one-sided coupled operator matrices, Conf. Semin. Mat. Univ. Bari 283 (2002), 1-29. MR 1966540 (2004e:47062)
  • 22. T. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Funct. Anal. 3 (1969), 111-132. MR 0242016 (39:3351)
  • 23. T. Kurtz, A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc. 148 (1970), 201-205. MR 0256210 (41:867)
  • 24. J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations 50 (1983), 163-182. MR 719445 (85f:35025)
  • 25. J. Liang, R. Nagel and T. J. Xiao, Nonautonomous heat equations with generalized Wentzell boundary conditions. J. Evolution Equations 3 (2003), 321-331. MR 1980980 (2004b:35134)
  • 26. J. L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, Berlin, 1961. MR 0153974 (27:3935)
  • 27. C. Lizama, On an extension of the Trotter-Kato theorem for resolvent families of operators, J. Integral Equations Appl. 2 (1990), 269-280. MR 1045773 (91c:47093)
  • 28. C. Lizama, On approximation and representation of $ K$-regularized resolvent families, Integral Equations Operator Theory 41 (2001), 223-229. MR 1847173 (2002f:47085)
  • 29. S. Nicaise, The Hille-Yosida and Trotter-Kato theorems for integrated semigroups, J. Math. Anal. Appl. 180 (1993), 201-205. MR 1251861 (94m:47082)
  • 30. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. MR 710486 (85g:47061)
  • 31. S. Piskarev and V. V. Vasiliev, Differential equations in Banach spaces. II. Theory of cosine operator functions, Functional analysis. J. Math. Sci. (N. Y.) 122 (2004), 3055-3174. MR 2084186 (2005d:34133)
  • 32. T. I. Seidman, Approximation of operator semi-groups, J. Funct. Anal. 5 (1970), 160-166. MR 0254659 (40:7866)
  • 33. H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958), 887-919. MR 0103420 (21:2190)
  • 34. T. J. Xiao and J. Liang, The Cauchy Problem for Higher Order Abstract Differential Equations, Lect. Notes in Math., vol. 1701, Springer, Berlin, New York, 1998. MR 1725643 (2001a:34099)
  • 35. T. J. Xiao and J. Liang, Approximations of Laplace transforms and integrated semigroups, J. Funct. Anal. 172 (2000), 202-220. MR 1749872 (2001b:47072)
  • 36. T. J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions, Math. Ann. 327 (2003), 351-363. MR 2015075 (2004m:35162)
  • 37. T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary conditions, J. Differential Equations 200 (2004), 105-136. MR 2046319 (2005f:34167)
  • 38. T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions, Trans. Amer. Math. Soc. 356 (2004), 4787-4809. MR 2084398 (2005e:34173)
  • 39. K. Yosida, Functional Analysis (6th edition), Springer-Verlag, New York, 1980. MR 617913 (82i:46002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34G10, 35R20, 47D09

Retrieve articles in all journals with MSC (2000): 34G10, 35R20, 47D09


Additional Information

Jin Liang
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Email: jliang@ustc.edu.cn

Rainer Nagel
Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany
Email: rana@fa.uni-tuebingen.de

Ti-Jun Xiao
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Email: xiaotj@ustc.edu.cn

DOI: https://doi.org/10.1090/S0002-9947-07-04551-5
Keywords: Differential equations in Banach spaces, higher order (in time), dynamic boundary conditions, approximation
Received by editor(s): May 11, 2005
Published electronically: November 26, 2007
Additional Notes: The first author acknowledges support from the Max-Planck Society and the Program for NCET
The third author acknowledges support from the Alexander-von-Humboldt Foundation, the Hundred Talents Program of the Chinese Academy of Sciences and the National Natural Science Foundation of China.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society