Supercharacters and superclasses for algebra groups
Authors:
Persi Diaconis and I. M. Isaacs
Journal:
Trans. Amer. Math. Soc. 360 (2008), 23592392
MSC (2000):
Primary 20C15, 20D15
Published electronically:
November 20, 2007
MathSciNet review:
2373317
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study certain sums of irreducible characters and compatible unions of conjugacy classes in finite algebra groups. These groups generalize the unimodular upper triangular groups over a finite field, and the supercharacter theory we develop extends results of Carlos André and Ning Yan that were originally proved in the upper triangular case. This theory sometimes allows explicit computations in situations where it would be impractical to work with the full character table. We discuss connections with the Kirillov orbit method and with Gelfand pairs, and we give conditions for a supercharacter or a superclass to be an ordinary irreducible character or conjugacy class, respectively. We also show that products of supercharacters are positive integer combinations of supercharacters.
 1.
Carlos
A. M. André, Basic characters of the unitriangular
group, J. Algebra 175 (1995), no. 1,
287–319. MR 1338979
(96h:20081a), http://dx.doi.org/10.1006/jabr.1995.1187
 2.
Carlos
A. M. André, Irreducible characters of finite algebra
groups, Matrices and group representations (Coimbra, 1998) Textos
Mat. Sér. B, vol. 19, Univ. Coimbra, Coimbra, 1999,
pp. 65–80. MR 1773571
(2001g:20009)
 3.
Carlos
A. M. André, Basic characters of the unitriangular
group (for arbitrary primes), Proc. Amer. Math.
Soc. 130 (2002), no. 7, 1943–1954 (electronic). MR 1896026
(2003g:20075), http://dx.doi.org/10.1090/S0002993902062871
 4.
Ery
AriasCastro, Persi
Diaconis, and Richard
Stanley, A superclass walk on uppertriangular matrices, J.
Algebra 278 (2004), no. 2, 739–765. MR 2071663
(2005f:60101), http://dx.doi.org/10.1016/j.jalgebra.2004.04.005
 5.
I.
Martin Isaacs, Character theory of finite groups, Dover
Publications Inc., New York, 1994. Corrected reprint of the 1976 original
[Academic Press, New York; MR0460423 (57 #417)]. MR
1280461
 6.
I.
M. Isaacs, Characters of groups associated with finite
algebras, J. Algebra 177 (1995), no. 3,
708–730. MR 1358482
(96k:20011), http://dx.doi.org/10.1006/jabr.1995.1325
 7.
I. M. Isaacs, Algebra groups, unpublished notes, 1997.
 8.
I.
M. Isaacs and Dikran
Karagueuzian, Conjugacy in groups of upper triangular
matrices, J. Algebra 202 (1998), no. 2,
704–711. MR 1617655
(99b:20011), http://dx.doi.org/10.1006/jabr.1997.7311
 9.
I.
M. Isaacs and Dikran
Karagueuzian, Erratum: “Conjugacy in groups of upper
triangular matrices” [J.\
Algebra 202 (1998), no. 2, 704–711;
MR1617655 (99b:20011)], J. Algebra 208 (1998),
no. 2, 722. MR 1655475
(99g:20021), http://dx.doi.org/10.1006/jabr.1998.7430
 10.
Andrei
JaikinZapirain, A counterexample to the fake degree
conjecture, Chebyshevskiĭ Sb. 5 (2004),
no. 1(9), 188–192. MR 2098978
(2005g:20012)
 11.
A.
A. Kirillov, Variations on the triangular theme, Lie groups
and Lie algebras: E. B. Dynkin’s Seminar, Amer. Math. Soc. Transl.
Ser. 2, vol. 169, Amer. Math. Soc., Providence, RI, 1995,
pp. 43–73. MR 1364453
(97a:20072)
 12.
I.
G. Macdonald, Symmetric functions and Hall polynomials, 2nd
ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University
Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science
Publications. MR
1354144 (96h:05207)
 13.
Josu
Sangroniz, Characters of algebra groups and unitriangular
groups, Finite groups 2003, Walter de Gruyter GmbH & Co. KG,
Berlin, 2004, pp. 335–349. MR 2125084
(2006e:20012)
 14.
Ning Yan, Representation Theory of the finite unipotent linear groups, unpublished manuscript, 2001.
 1.
 Carlos A. M. André, Basic characters of the unitriangular group, J. of Algebra 175 (1995), 287319. MR 1338979 (96h:20081a)
 2.
 Carlos A. M. André, Irreducible characters of finite algebra groups, Matrices and Group Representations Coimbra, 1998 Textos Mat. Sér B 19 (1999), 6580. MR 1773571 (2001g:20009)
 3.
 Carlos A. M. André, Basic characters of the unitriangular group (for arbitrary primes), Proc. Amer. Math Soc. 130 (2002), 19431954. MR 1896026 (2003g:20075)
 4.
 E. AriasCastro, Persi Diaconis and Richard Stanley, A superclass walk on uppertriangular matrices, J. of Algebra 278 (2004), 739765. MR 2071663 (2005f:60101)
 5.
 I. M. Isaacs, Character theory of finite groups, Dover, New York, 1994. MR 1280461
 6.
 I. M. Isaacs, Characters of groups associated with finite algebras, J. of Algebra 177 (1995), 708730. MR 1358482 (96k:20011)
 7.
 I. M. Isaacs, Algebra groups, unpublished notes, 1997.
 8.
 I. M. Isaacs and Dikran Karagueuzian, Conjugacy in groups of upper triangular matrices, J. of Algebra 202 (1998), 704711. MR 1617655 (99b:20011)
 9.
 I. M. Isaacs and Dikran Karagueuzian, Erratum: Conjugacy in groups of upper triangular matrices, J. of Algebra 208 (1998), 722. MR 1655475 (99g:20021)
 10.
 Andre JaikinZapirain, A counterexample to the fake degree conjecture, ChebyshevskiSb. 5 (2004), 188192. MR 2098978 (2005g:20012)
 11.
 A. A. Kirillov, Variations on the triangular theme, Lie groups and Lie algebras: E. B. Dynkin's Seminar, 4373, Amer. Math. Soc. Transl. Ser. 2, 169 Providence, RI, 1995. MR 1364453 (97a:20072)
 12.
 I. G. Macdonald, Symmetric functions and Hall polynomials, Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford University Press, New York, 1995. MR 1354144 (96h:05207)
 13.
 Josu Sangroniz, Characters of algebra groups and unitriangular groups. Finite groups 2003, 335349, Walter de Gruyter, Berlin, 2004. MR 2125084 (2006e:20012)
 14.
 Ning Yan, Representation Theory of the finite unipotent linear groups, unpublished manuscript, 2001.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
20C15,
20D15
Retrieve articles in all journals
with MSC (2000):
20C15,
20D15
Additional Information
Persi Diaconis
Affiliation:
Department of Mathematics, Stanford University, 450 Serra Mall Bldg. 380, Stanford, California 94305
Email:
diaconis@math.stanford.edu
I. M. Isaacs
Affiliation:
Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, Wisconsin 53706
Email:
isaacs@math.wisc.edu
DOI:
http://dx.doi.org/10.1090/S0002994707043656
PII:
S 00029947(07)043656
Received by editor(s):
December 30, 2005
Published electronically:
November 20, 2007
Article copyright:
© Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
