Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rational irreducible characters and rational conjugacy classes in finite groups


Authors: Gabriel Navarro and Pham Huu Tiep
Journal: Trans. Amer. Math. Soc. 360 (2008), 2443-2465
MSC (2000): Primary 20C15, 20C33, 20E45
DOI: https://doi.org/10.1090/S0002-9947-07-04375-9
Published electronically: November 27, 2007
MathSciNet review: 2373321
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a finite group $ G$ has two rational-valued irreducible characters if and only if it has two rational conjugacy classes, and determine the structure of any such group. Along the way we also prove a conjecture of Gow stating that any finite group of even order has a non-trivial rational-valued irreducible character of odd degree.


References [Enhancements On Off] (What's this?)

  • [1] A. Borel, R. Carter, C. W. Curtis, N. Iwahori, T. A. Springer, R. Steinberg, Seminar on Algebraic Groups and Related Finite Groups, Lect. Notes in Math. 131, Springer-Verlag, Berlin, 1970.
  • [2] E. G. Bryukhanova, Automorphism groups of $ 2$-automorphic $ 2$-groups, Algebra i Logika 20 (1981), 5-21, 123. MR 635647 (83c:20036)
  • [3] R. Carter, Finite Groups of Lie type: Conjugacy Classes and Complex Characters, Wiley, Chichester, 1985. MR 794307 (87d:20060)
  • [4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, An ATLAS of Finite Groups, Clarendon Press, Oxford, 1985. MR 827219 (88g:20025)
  • [5] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Annals of Math. 103 (1976), 103-161. MR 0393266 (52:14076)
  • [6] F. Digne, J. Michel, Representations of Finite Groups of Lie Type, London Mathematical Society Student Texts 21, Cambridge University Press, 1991. MR 1118841 (92g:20063)
  • [7] L. Dornhoff, Group Representation Theory, Marcel Dekker, New York, 1972. MR 0347960 (50:458b)
  • [8] F. Gros, $ 2$-automorphic $ 2$-groups, J. Algebra 40 (1976), 348-353. MR 0409642 (53:13394)
  • [9] R. M. Guralnick, J. Saxl, Generation of finite almost simple groups by conjugates, J. Algebra 268 (2003), 519-571. MR 2009321 (2005f:20057)
  • [10] R. M. Guralnick, Pham Huu Tiep, Cross characteristic representations of even characteristic symplectic groups, Trans. Amer. Math. Soc. 356 (2004), 4969-5023. MR 2084408 (2005j:20012)
  • [11] R. M. Guralnick, Pham Huu Tiep, The non-coprime $ k(GV)$-problem, J. Algebra 293 (2005), 185-242. MR 2173972 (2006g:20018)
  • [12] B. Huppert, N. Blackburn, Finite Groups II, Springer-Verlag, Berlin et al., 1982. MR 650245 (84i:20001a)
  • [13] I. M. Isaacs, Characters of $ \pi $-separable groups, J. Algebra 86 (1984), 98-128. MR 727371 (85h:20012)
  • [14] I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994. MR 1280461
  • [15] S. Iwasaki, On finite groups with exactly two real conjugate classes, Arch. Math. 33 (1979/80), 512-517. MR 570486 (81g:20051)
  • [16] C. Jansen, K. Lux, R. A. Parker, R. A. Wilson, An ATLAS of Brauer Characters, Oxford University Press, Oxford, 1995. MR 1367961 (96k:20016)
  • [17] G. Lusztig, Characters of Reductive Groups over a Finite Field, Annals of Math. Studies 107, Princeton Univ. Press, Princeton, 1984. MR 742472 (86j:20038)
  • [18] G. Lusztig, On the representations of reductive groups with disconnected centre, Orbites Unipotentes et Représentations, I. Astérisque, vol. 168, 1988, pp. 157-166. MR 1021495 (90j:20083)
  • [19] M. W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. 54 (1987), 477-516. MR 879395 (88m:20004)
  • [20] F. Lübeck, Smallest degrees of representations of exceptional groups of Lie type, Comm. Algebra 29 (2001), 2147-2169. MR 1837968 (2002g:20029)
  • [21] I. M. Richards, Characters of groups with quotients of odd order, J. Algebra 96 (1985), 45-47. MR 808839 (87g:20016)
  • [22] W. Simpson, J. S. Frame, The character tables for $ SL(3,q)$, $ SU(3,q^{2})$, $ PSL(3,q)$, and $ PSU(3,q^{2})$, Can. J. Math. 25 (1973), 486-494. MR 0335618 (49:398)
  • [23] P. Sin, Pham Huu Tiep, Rank $ 3$ permutation modules of the finite classical groups, J. Algebra 291 (2005), 551-606. MR 2163483 (2006j:20019)
  • [24] B. Wilkens, A note on $ 2$-automorphic $ 2$-groups, J. Algebra 184 (1996), 199-206. MR 1402576 (97h:20024)
  • [25] T. R. Wolf, Character correspondences in solvable groups, Ill. J. Math. 22 (1978), 327-340. MR 0498821 (58:16858)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20C15, 20C33, 20E45

Retrieve articles in all journals with MSC (2000): 20C15, 20C33, 20E45


Additional Information

Gabriel Navarro
Affiliation: Facultat de Matemàtiques, Universitat de València, Burjassot, València 46100, Spain
Email: gabriel@uv.es

Pham Huu Tiep
Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611
Email: tiep@math.ufl.edu

DOI: https://doi.org/10.1090/S0002-9947-07-04375-9
Keywords: Rational irreducible character, rational conjugacy class
Received by editor(s): February 6, 2006
Published electronically: November 27, 2007
Additional Notes: The first author was partially supported by the Ministerio de Educación y Ciencia proyecto MTM2004-06067-C02-01.
Part of this work was done while the first author visited the University of Florida in Gainesville, and he would like to thank the Mathematics Department for its hospitality. Special thanks are due to A. Turull. This paper benefited from conversations with M. Isaacs, A. Moretó, A. Turull and B. Wilkens. The authors are grateful to the referee for pointing out some inaccuracies in an earlier version of the paper as well as for helpful comments that greatly improved the exposition of the paper.
The second author gratefully acknowledges the support of the NSA and the NSF
Dedicated: Dedicated to Professor Michel Broué on the occasion of his sixtieth birthday
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society