Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Finiteness of cousin cohomologies


Author: Takesi Kawasaki
Journal: Trans. Amer. Math. Soc. 360 (2008), 2709-2739
MSC (2000): Primary 13D03; Secondary 13A30, 13F40, 13H10
DOI: https://doi.org/10.1090/S0002-9947-07-04418-2
Published electronically: September 25, 2007
MathSciNet review: 2373331
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of the Cousin complex of a module was given by Sharp in 1969. It wasn't known whether its cohomologies are finitely generated until recently. In 2001, Dibaei and Tousi showed that the Cousin cohomologies of a finitely generated $ A$-module $ M$ are finitely generated if the base ring $ A$ is local, has a dualizing complex, $ M$ satisfies Serre's $ (S_2)$-condition and is equidimensional. In the present article, the author improves their result. He shows that the Cousin cohomologies of $ M$ are finitely generated if $ A$ is universally catenary, all the formal fibers of all the localizations of $ A$ are Cohen-Macaulay, the Cohen-Macaulay locus of each finitely generated $ A$-algebra is open and all the localizations of $ M$ are equidimensional. As a consequence of this, he gives a necessary and sufficient condition for a Noetherian ring to have an arithmetic Macaulayfication.


References [Enhancements On Off] (What's this?)

  • 1. Yôichi Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), no. 1, 85-94. MR 692731 (84i:13015)
  • 2. Nguy $ \tilde{\hat{\text{e}}}$n Tu' Cu'ò'ng, On the length of the powers of systems of parameters in local ring, Nagoya Math. J. 120 (1990), 77-88. MR 1086571 (92b:13033)
  • 3. -, On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing complexes, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 479-488. MR 1094747 (92b:13034)
  • 4. M. T. Dibaei and M. Tousi, The structure of dualizing complex for a ring which is $ ({\rm S}\sb 2)$, J. Math. Kyoto Univ. 38 (1998), no. 3, 503-516. MR 1661220 (99k:13020)
  • 5. -, A generalization of the dualizing complex structure and its applications, J. Pure Appl. Algebra 155 (2001), no. 1, 17-28. MR 1804325 (2001m:13022)
  • 6. Gerd Faltings, Der Endlichkeitssatz in der lokalen Kohomologie, Math. Ann. 255 (1981), no. 1, 45-56. MR 611272 (82f:13003)
  • 7. Robert Fossum, Hans-Bjørn Foxby, Phillip Griffith, and Idun Reiten, Minimal injective resolutions with applications to dualizing modules and Gorenstein modules, Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 193-215. MR 0396529 (53:392)
  • 8. Shiro Goto, Approximately Cohen-Macaulay rings, J. Algebra 76 (1982), no. 1, 214-225. MR 659220 (84h:13033)
  • 9. Shiro Goto and Kikumichi Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology, preprint.
  • 10. Janet E. Hall, Fundamental dualizing complexes for commutative Noetherian rings, Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 117, 21-32. MR 528888 (80h:13016)
  • 11. Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. MR 0222093 (36:5145)
  • 12. Craig Huneke, The theory of $ d$-sequences and powers of ideals, Adv. in Math. 46 (1982), no. 3, 249-279. MR 683201 (84g:13021)
  • 13. Eero Hyry, The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2213-2232. MR 1467469 (99i:13005)
  • 14. Takesi Kawasaki, On Macaulayfication of Noetherian schemes, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2517-2552. MR 1707481 (2000j:14077)
  • 15. -, On arithmetic Macaulayfication of Noetherian rings, Trans. Amer. Math. Soc. 354 (2002), no. 1, 123-149 (electronic). MR 1859029 (2002i:13001)
  • 16. Tetsushi Ogoma, Fibre products of Noetherian rings and their applications, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 2, 231-241. MR 771818 (86e:13008)
  • 17. Henrike Petzl, Cousin complexes and flat ring extensions, Comm. Algebra 25 (1997), no. 1, 311-339. MR 1429765 (98c:13024)
  • 18. L. J. Ratliff, Jr., Characterizations of catenary rings, Amer. J. Math. 93 (1971), 1070-1108. MR 0297752 (45:6804)
  • 19. Peter Schenzel, Cohomological annihilators, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 3, 345-350. MR 654081 (83j:13008)
  • 20. -, Standard systems of parameters and their blowing-up rings, J. Reine Angew. Math. 344 (1983), 201-220. MR 716256 (84m:13025)
  • 21. R. Y. Sharp, Cousin complex characterizations of two classes of commutative Noetherian rings, J. London Math. Soc. (2) 3 (1971), 621-624. MR 0294323 (45:3392)
  • 22. Rodney Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring., Math. Z. 112 (1969), 340-356. MR 0263800 (41:8400)
  • 23. -, Acceptable rings and homomorphic images of Gorenstein rings, J. Algebra 44 (1977), no. 1, 246-261. MR 0441957 (56:348)
  • 24. -, Local cohomology and the Cousin complex for a commutative Noetherian ring, Math. Z. 153 (1977), no. 1, 19-22. MR 0442062 (56:450)
  • 25. Ngô Vi $ \overset{\cdot}{\hat{\text{e}}}$t Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49. MR 846128 (87h:13018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13D03, 13A30, 13F40, 13H10

Retrieve articles in all journals with MSC (2000): 13D03, 13A30, 13F40, 13H10


Additional Information

Takesi Kawasaki
Affiliation: Department of Mathematics, Tokyo Metropolitan University, Hachioji-shi Minami Ohsawa 1-1,d Tokyo, 192-0397, Japan
Email: kawasaki@tmu.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-07-04418-2
Keywords: Arithmetic Macaulayfication, Cohen-Macaulay ring, Cousin complex, excellent ring
Received by editor(s): October 8, 2003
Received by editor(s) in revised form: September 4, 2006
Published electronically: September 25, 2007
Additional Notes: This work was supported by the Japan Society for the Promotion of Science (the Grant-in-Aid for Scientific Research (C)(2) 13640034)
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society