Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Graded level zero integrable representations of affine Lie algebras


Authors: Vyjayanthi Chari and Jacob Greenstein
Journal: Trans. Amer. Math. Soc. 360 (2008), 2923-2940
MSC (2000): Primary 17B67
DOI: https://doi.org/10.1090/S0002-9947-07-04394-2
Published electronically: December 11, 2007
MathSciNet review: 2379781
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the structure of the category of integrable level zero representations with finite dimensional weight spaces of affine Lie algebras. We show that this category possesses a weaker version of the finite length property, namely that an indecomposable object has finitely many simple constituents which are non-trivial as modules over the corresponding loop algebra. Moreover, any object in this category is a direct sum of indecomposables only finitely many of which are non-trivial. We obtain a parametrization of blocks in this category.


References [Enhancements On Off] (What's this?)

  • 1. J. Beck and H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J. 123 (2004), no. 2, 335-402 MR 2066942 (2005e:17020)
  • 2. V. Chari, Integrable representations of affine Lie-algebras, Invent. Math. 85 (1986), no. 2, 317-335 MR 846931 (88a:17034)
  • 3. V. Chari and J. Greenstein, Quantum loop modules, Represent. Theory 7 (2003), 56-80 (electronic) MR 1973367 (2004b:17044)
  • 4. V. Chari and S. Loktev, Weyl, Fusion and Demazure modules for the current algebra of $ \mathfrak{sl}_{r+1}$, Adv. Math. 207 (2006), no. 2, 928-960. MR 2271991
  • 5. V. Chari and A. A. Moura, Spectral characters of finite-dimensional representations of affine algebras, J. Algebra 279 (2004), no. 2, 820-839 MR 2078944 (2005f:17002)
  • 6. -, Characters and blocks for finite-dimensional representations of quantum affine algebras, Int. Math. Res. Not. 2005, no. 5, 257-298 MR 2130797 (2006a:17021)
  • 7. V. Chari and A. Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), no. 1, 87-104 MR 849057 (88f:17029)
  • 8. -, Weyl modules for classical and quantum affine algebras. Represent. Theory 5 (2001), 191-223 MR 1850556 (2002g:17027)
  • 9. P. I. Etingof and A. A. Moura, Elliptic central characters and blocks of finite dimensional representations of quantum affine algebras, Represent. Theory 7 (2003), 346-373 (electronic) MR 2017062 (2004j:17017)
  • 10. G. Fourier and P. Littelmann, Weyl modules, Demazure modules, $ KR$-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), no. 2, 566-593 MR 2323538
  • 11. J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer, New York, 1978 MR 499562 (81b:17007)
  • 12. M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383-413 MR 1262212 (95c:17024)
  • 13. -, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117-175 MR 1890649 (2002m:17013)
  • 14. H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145-238 (electronic) MR 1808477 (2002i:17023)
  • 15. -, Extremal weight modules of quantum affine algebras, Adv. Stud. Pure Math. 40 (2004), 343-369 MR 2074599 (2005g:17036)
  • 16. S. Eswara Rao, Complete reducibility of integrable modules for the affine Lie (super)algebras, J. Algebra 264 (2003), no. 1, 269-278 MR 1980697 (2004b:17016)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 17B67

Retrieve articles in all journals with MSC (2000): 17B67


Additional Information

Vyjayanthi Chari
Affiliation: Department of Mathematics, University of California, Riverside, California 92521
Email: vyjayanthi.chari@ucr.edu

Jacob Greenstein
Affiliation: Department of Mathematics, University of California, Riverside, California 92521
Email: jacob.greenstein@ucr.edu

DOI: https://doi.org/10.1090/S0002-9947-07-04394-2
Received by editor(s): February 23, 2006
Published electronically: December 11, 2007
Additional Notes: This work was partially supported by the NSF grant DMS-0500751
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society