Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A connectedness result in positive characteristic

Authors: Anurag K. Singh and Uli Walther
Journal: Trans. Amer. Math. Soc. 360 (2008), 3107-3119
MSC (2000): Primary 13D45; Secondary 13A35.
Published electronically: January 8, 2008
MathSciNet review: 2379789
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (R,\mathfrak{m})$ be a complete local ring of dimension at least two, which contains a separably closed coefficient field of positive characteristic. Using a vanishing theorem of Peskine-Szpiro, Lyubeznik proved that the local cohomology module $ H^1_{\mathfrak{m}}(R)$ is Frobenius-torsion if and only if the punctured spectrum of $ R$ is connected in the Zariski topology. We give a simple proof of this theorem and, more generally, a formula for the number of connected components in terms of the Frobenius action on $ H^1_{\mathfrak{m}}(R)$.

References [Enhancements On Off] (What's this?)

  • [BR] M. Brodmann and J. Rung, Local cohomology and the connectedness dimension in algebraic varieties, Comment. Math. Helv. 61 (1986), 481-490. MR 860135 (87j:14006)
  • [Di] J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic $ p>0$. II, Amer. J. Math. 77 (1955), 218-244. MR 0067872 (16:789f)
  • [EHV] D. Eisenbud, C. Huneke, and W. Vasconcelos, Direct methods for primary decomposition, Invent. Math. 110 (1992), 207-235. MR 1185582 (93j:13032)
  • [Fa] G. Faltings, Über lokale Kohomologiegruppen hoher Ordnung, J. Reine Angew. Math. 313 (1980), 43-51. MR 552461 (82f:14006)
  • [GTZ] P. Gianni, B. Trager, and G. Zacharias, Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput. 6 (1988), 149-167. MR 988410 (90f:68091)
  • [GW] S. Goto and K.-i. Watanabe, The structure of one-dimensional $ F$-pure rings, J. Algebra 49 (1977), 415-421. MR 0453729 (56:11989)
  • [HaN] N. Hara, Classification of two-dimensional $ F$-regular and $ F$-pure singularities Adv. Math. 133 (1998), 33-53. MR 1492785 (99a:14048)
  • [HaR] R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403-450. MR 0232780 (38:1103)
  • [HS] R. Hartshorne and R. Speiser, Local cohomological dimension in characteristic $ p$, Ann. of Math. (2) 105 (1977), 45-79. MR 0441962 (56:353)
  • [HH] M. Hochster and C. Huneke, Indecomposable canonical modules and connectedness, in: Commutative algebra: Syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math. 159, Amer. Math. Soc., Providence, RI, 1994, 197-208. MR 1266184 (95e:13014)
  • [HR1] M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115-175. MR 0347810 (50:311)
  • [HR2] M. Hochster and J. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), 117-172. MR 0417172 (54:5230)
  • [HL] C. Huneke and G. Lyubeznik, On the vanishing of local cohomology modules, Invent. Math. 102 (1990), 73-93. MR 1069240 (91i:13020)
  • [Ly1] G. Lyubeznik, $ F$-modules: Applications to local cohomology and $ D$-modules in characteristic $ p>0$, J. Reine Angew. Math. 491 (1997), 65-130. MR 1476089 (99c:13005)
  • [Ly2] G. Lyubeznik, On the vanishing of local cohomology in characteristic $ p>0$, Compos. Math. 142 (2006), 207-221. MR 2197409 (2007b:13029)
  • [MS] V. B. Mehta and V. Srinivas, Normal $ F$-pure surface singularities, J. Algebra 143 (1991), 130-143. MR 1128650 (92j:14044)
  • [Og] A. Ogus, Local cohomological dimension of algebraic varieties, Ann. of Math. (2) 98 (1973), 327-365. MR 0506248 (58:22059)
  • [PS] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47-119. MR 0374130 (51:10330)
  • [Ra] M. Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics 169, Springer-Verlag, Berlin-New York, 1970. MR 0277519 (43:3252)
  • [SY] T. Shimoyama and K. Yokoyama, Localization and primary decomposition of polynomial ideals, J. Symbolic Comput. 22 (1996), 247-277. MR 1427183 (98a:13038)
  • [Wal] U. Walther, Algorithmic determination of the rational cohomology of complex varieties via differential forms, Contemp. Math. 286 (2001), 185-206. MR 1874280 (2003b:14027)
  • [Wat1] K.-i. Watanabe, Study of $ F$-purity in dimension two, in: Algebraic Geometry and Commutative Algebra in honor of Masayoshi Nagata, Vol. II, Kinokuniya, Tokyo, 1988, 791-800. MR 977783 (90b:14005)
  • [Wat2] K.-i. Watanabe, $ F$-regular and $ F$-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), 341-350. MR 1117644 (92g:13003)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13D45, 13A35.

Retrieve articles in all journals with MSC (2000): 13D45, 13A35.

Additional Information

Anurag K. Singh
Affiliation: Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112

Uli Walther
Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907

Received by editor(s): March 26, 2006
Published electronically: January 8, 2008
Additional Notes: The first author was supported by NSF grants DMS 0300600 and DMS 0600819
The second author was supported by NSF grants DMS 0100509 and DMS 0555319, and by NSA grant H98230-06-1-0012. We are grateful to Gennady Lyubeznik for useful discussions and comments.
Dedicated: Dedicated to Professor Paul Roberts on the occasion of his sixtieth birthday
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society