Sandwich pairs in critical point theory

Author:
Martin Schechter

Journal:
Trans. Amer. Math. Soc. **360** (2008), 2811-2823

MSC (2000):
Primary 35J65, 58E05, 49J35

Published electronically:
January 25, 2008

MathSciNet review:
2379776

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Since the development of the calculus of variations there has been interest in finding critical points of functionals. This was intensified by the fact that for many equations arising in practice the solutions are critical points of functionals. If a functional is semibounded, one can find a Palais-Smale (PS) sequence

**[Ad]**Robert A. Adams,*Sobolev spaces*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR**0450957****[BL]**Jöran Bergh and Jörgen Löfström,*Interpolation spaces. An introduction*, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR**0482275****[FMS]**Marcelo F. Furtado, Liliane A. Maia, and Elves A. B. Silva,*On a double resonant problem in ℝ^{ℕ}*, Differential Integral Equations**15**(2002), no. 11, 1335–1344. MR**1920690****[FS]**Marcelo F. Furtado and Elves A. B. Silva,*Double resonant problems which are locally non-quadratic at infinity*, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000) Electron. J. Differ. Equ. Conf., vol. 6, Southwest Texas State Univ., San Marcos, TX, 2001, pp. 155–171. MR**1804772****[Sc1]**Martin Schechter,*New saddle point theorems*, Generalized functions and their applications (Varanasi, 1991) Plenum, New York, 1993, pp. 213–219. MR**1240078**, 10.1007/978-1-4899-1591-7_20**[Sc2]**Martin Schechter,*A generalization of the saddle point method with applications*, Ann. Polon. Math.**57**(1992), no. 3, 269–281. MR**1201854****[Sc3]**Martin Schechter,*New linking theorems*, Rend. Sem. Mat. Univ. Padova**99**(1998), 255–269. MR**1636619****[Sc4]**Martin Schechter,*Linking methods in critical point theory*, Birkhäuser Boston, Inc., Boston, MA, 1999. MR**1729208****[Si1]**Elves Alves de B. e Silva,*Linking theorems and applications to semilinear elliptic problems at resonance*, Nonlinear Anal.**16**(1991), no. 5, 455–477. MR**1093380**, 10.1016/0362-546X(91)90070-H

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
35J65,
58E05,
49J35

Retrieve articles in all journals with MSC (2000): 35J65, 58E05, 49J35

Additional Information

**Martin Schechter**

Affiliation:
Department of Mathematics, University of California, Irvine, California 92697-3875

Email:
mschecht@math.uci.edu

DOI:
https://doi.org/10.1090/S0002-9947-08-04470-X

Keywords:
Critical point theory,
variational methods,
saddle point theory,
semilinear differential equations.

Received by editor(s):
August 14, 2005

Published electronically:
January 25, 2008

Article copyright:
© Copyright 2008
American Mathematical Society