Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Affine geometric crystals and limit of perfect crystals


Authors: Masaki Kashiwara, Toshiki Nakashima and Masato Okado
Journal: Trans. Amer. Math. Soc. 360 (2008), 3645-3686
MSC (2000): Primary 17B37, 17B67; Secondary 22E65, 14M15
DOI: https://doi.org/10.1090/S0002-9947-08-04341-9
Published electronically: February 13, 2008
MathSciNet review: 2386241
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For every non-exceptional affine Lie algebra, we explicitly construct a positive geometric crystal associated with a fundamental representation. We also show that its ultra-discretization is isomorphic to the limit of certain perfect crystals of the Langlands dual affine Lie algebra.


References [Enhancements On Off] (What's this?)

  • 1. Berenstein, A. and Kazhdan, D., Geometric and unipotent crystals, GAFA 2000 (Tel Aviv, 1999), Geom Funct. Anal. Special Volume, Part I, (2000) 188-236. MR 1826254 (2003b:17013)
  • 2. Hatayama, G., Kuniba, A., Okado, M., Takagi, T. and Yamada, Y., Remarks on fermionic formula, Contemp. Math. 248 (1999) 243-291. MR 1745263 (2001m:81129)
  • 3. Hatayama, G., Kuniba, A., Okado, M., Takagi, T. and Tsuboi, Z., Paths, crystals and fermionic formulae, in ``MathPhys Odyssey 2001-Integrable Models and Beyond In Honor of Barry M.McCoy'', edited by M. Kashiwara and T. Miwa, Birkhäuser (2002) 205-272. MR 1903978 (2003e:17020)
  • 4. Kac, V.G., Infinite Dimensional Lie Algebras, Cambridge Univ. Press, 3rd edition (1990). MR 1104219 (92k:17038)
  • 5. Kac, V.G. and Peterson, D.H., Defining relations of certain infinite-dimensional groups, in ``Arithmetic and Geometry'' (Artin M., Tate J., eds), Birkhäuser, Boston-Basel-Stuttgart, (1983) 141-166. MR 717610 (86b:17010)
  • 6. Kang, S.-J., Kashiwara, M. and Misra, K.C., Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Mathematica 92 (1994) 299-325. MR 1286129 (95h:17016)
  • 7. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T. and Nakayashiki, A., Affine crystals and vertex models, Int. J. Mod. Phys., A7 Suppl. 1A (1992) 449-484. MR 1187560 (94a:17008)
  • 8. -, Perfect crystals of quantum affine Lie algebras, Duke Math. J., 68(3), (1992) 499-607. MR 1194953 (94j:17013)
  • 9. Kashiwara, M., On level-zero representation of quantized affine algebras, Duke Math. J., 112 (2002) 499-525. MR 1890649 (2002m:17013)
  • 10. -, Level zero fundamental representations over quantized affine algebras and Demazure modules, Publ. Res. Inst. Math. Sci. 41 (2005) no. 1, 223-250. MR 2115972 (2005i:17021)
  • 11. Kumar, S., Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics 204, Birkhäuser Boston, (2002). MR 1923198 (2003k:22022)
  • 12. Kuniba, A., Misra, K.C., Okado, M., Takagi T. and Uchiyama J., Crystals for Demazure modules of classical affine Lie algebras, J. of Alg. 208 (1998) 185-215. MR 1643999 (99h:17008)
  • 13. Kuniba, A., Okado, M., Takagi, T. and Yamada, Y., Geometric crystals and tropical $ \mathcal R$ for $ D^{(1)}_n$, IMRN, no.48, (2003) 2565-2620. MR 2013509 (2004h:17016)
  • 14. Nakashima, T., Geometric crystals on Schubert varieties, Journal of Geometry and Physics, 53 (2), (2005) 197-225. MR 2110832 (2006d:17016)
  • 15. -, Geometric crystals on unipotent groups and generalized Young tableaux, Journal of Algebra, 293 (2005) No.1, 65-88. MR 2173966 (2006j:20064)
  • 16. Peterson, D.H. and Kac, V.G., Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. USA, 80, (1983) 1778-1782. MR 699439 (84g:17017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 17B37, 17B67, 22E65, 14M15

Retrieve articles in all journals with MSC (2000): 17B37, 17B67, 22E65, 14M15


Additional Information

Masaki Kashiwara
Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kitashiwakawa, Sakyo-ku, Kyoto 606, Japan
Email: masaki@kurims.kyoto-u.ac.jp

Toshiki Nakashima
Affiliation: Department of Mathematics, Sophia University, Kioicho 7-1, Chiyoda-ku, Tokyo 102-8554, Japan
Email: toshiki@mm.sophia.ac.jp

Masato Okado
Affiliation: Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
Email: okado@sigmath.es.osaka-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-08-04341-9
Received by editor(s): December 29, 2005
Received by editor(s) in revised form: May 11, 2006
Published electronically: February 13, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society