Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the asymptotic behaviour of the eigenmodes for elliptic problems in domains becoming unbounded


Authors: Michel Chipot and Arnaud Rougirel
Journal: Trans. Amer. Math. Soc. 360 (2008), 3579-3602
MSC (2000): Primary 35P15, 35B40
Published electronically: January 9, 2008
MathSciNet review: 2386237
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this work is to analyze the asymptotic behaviour of the eigenmodes of some elliptic eigenvalue problems set on domains becoming unbounded in one or several directions. In particular, in the case of a linear elliptic operator in divergence form, we prove that the sequence of the $ k$-th eigenvalues convergences to the first eigenvalue of an elliptic problems set on the section of the domain. Moreover, an optimal rate of convergence of this sequence is given.


References [Enhancements On Off] (What's this?)

  • 1. Michel Chipot, Elements of nonlinear analysis, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2000. MR 1801735
  • 2. Michel Chipot, ℓ goes to plus infinity, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2002. MR 1999898
  • 3. M. Chipot and A. Rougirel, On the asymptotic behaviour of the solution of elliptic problems in cylindrical domains becoming unbounded, Commun. Contemp. Math. 4 (2002), no. 1, 15–44. MR 1890076, 10.1142/S0219199702000555
  • 4. M. Chipot and A. Rougirel, Remarks on the asymptotic behaviour of the solution to parabolic problems in domains becoming unbounded, Proceedings of the Third World Congress of Nonlinear Analysts, Part 1 (Catania, 2000), 2001, pp. 3–11. MR 1970625, 10.1016/S0362-546X(01)00151-1
  • 5. M. Chipot and A. Rougirel, On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions, Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 3, 319–338. MR 1849821, 10.3934/dcdsb.2001.1.319
  • 6. Michel Chipot and Arnaud Rougirel, Sur le comportement asymptotique de la solution de problèmes elliptiques dans des domaines cylindriques tendant vers l’infini, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 6, 435–440 (French, with English and French summaries). MR 1792482, 10.1016/S0764-4442(00)01675-X
  • 7. M. Chipot and A. Rougirel, Local stability under changes of boundary conditions at a far away location, Elliptic and parabolic problems (Rolduc/Gaeta, 2001) World Sci. Publ., River Edge, NJ, 2002, pp. 52–65. MR 1937527, 10.1142/9789812777201_0006
  • 8. Michel Chipot and Yitian Xie, On the asymptotic behaviour of the 𝑝-Laplace equation in cylinders becoming unbounded, Nonlinear partial differential equations and their applications, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 20, Gakkōtosho, Tokyo, 2004, pp. 16–27. MR 2087457
  • 9. Doina Cioranescu and Patrizia Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, vol. 17, The Clarendon Press, Oxford University Press, New York, 1999. MR 1765047
  • 10. Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845
  • 11. Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075
  • 12. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • 13. David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 567696
  • 14. P.A. Raviart and J.M. Thomas: Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, 1983.
  • 15. Guido Stampacchia, Èquations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, No. 16 (Été, 1965), Les Presses de l’Université de Montréal, Montreal, Que., 1966 (French). MR 0251373

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35P15, 35B40

Retrieve articles in all journals with MSC (2000): 35P15, 35B40


Additional Information

Michel Chipot
Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
Email: m.m.chipot@math.unizh.ch

Arnaud Rougirel
Affiliation: Laboratoire de Mathématiques et Applications, UMR 6086, Université de Poitiers & CNRS, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86 962 Futuroscope Chasseneuil Cedex, France
Email: rougirel@math.univ-poitiers.fr

DOI: http://dx.doi.org/10.1090/S0002-9947-08-04361-4
Keywords: Eigenvalue problems, $\ell$ goes to plus infinity
Received by editor(s): June 27, 2005
Received by editor(s) in revised form: April 24, 2006
Published electronically: January 9, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.