The isotrivial case in the Mordell-Lang Theorem

Author:
Dragos Ghioca

Journal:
Trans. Amer. Math. Soc. **360** (2008), 3839-3856

MSC (2000):
Primary 11G10; Secondary 11G25

DOI:
https://doi.org/10.1090/S0002-9947-08-04388-2

Published electronically:
February 27, 2008

MathSciNet review:
2386248

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We determine the structure of the intersection of a finitely generated subgroup of a semiabelian variety defined over a finite field with a closed subvariety . We also study a related question in the context of a power of the additive group scheme.

**1.**D. Abramovich and J. F. Voloch,*Toward a proof of the Mordell-Lang conjecture in characteristic*. Internat. Math. Res. Notices**5**(1992), 103-115. MR**1162230 (94f:11051)****2.**G. Faltings,*The general case of S. Lang's conjecture*. Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), 175-182, Perspect. Math., 15, Academic Press, San Diego, CA, 1994.**3.**D. Ghioca,*The Mordell-Lang Theorem for Drinfeld modules*. Internat. Math. Res. Notices,**53**(2005), 3273-3307. MR**2196099 (2006k:11105)****4.**D. Ghioca and R. Moosa,*Division points on subvarieties of isotrivial semiabelian varieties*, Internat. Math. Res. Notices**19**(2006), 1-23. MR**2264715 (2008c:14058)****5.**E. Hrushovski,*The Mordell-Lang conjecture for function fields*. J.Amer.Math.Soc**9**(1996), no.3, 667-690. MR**1333294 (97h:11154)****6.**M. Laurent,*Equations diophantiennes exponentielles*. Inventiones Math.**78**(1984), 299-327. MR**767195 (86j:11062)****7.**J. Milne,*Abelian varieties*. course notes available online at http://www.jmilne.org/math/.**8.**R. Moosa and T. Scanlon,*F-structures and integral points on semiabelian varieties over finite fields*. Amer. Journal of Math.**126**(2004), 473-522. MR**2058382 (2006f:11071)****9.**R. Moosa and T. Scanlon,*The Mordell-Lang Conjecture in positive characteristic revisited*. Model Theory and Applications (eds. L. Bélair, P. D'Aquino, D. Marker, M. Otero, F. Point, & A. Wilkie), 2003, 273-296. MR**2159720 (2007a:11085)****10.**B. Poonen,*Local height functions and the Mordell-Weil theorem for Drinfeld modules*, Compositio Math.**97**(1995), 349-368. MR**1353279 (96k:11075)****11.**J.-P. Serre,*Lectures on the Mordell-Weil theorem*. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. Aspects of Mathematics, E15. Friedr. Vieweg & Sohn, Braunschweig, 1989. x+218 pp. MR**1002324 (90e:11086)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
11G10,
11G25

Retrieve articles in all journals with MSC (2000): 11G10, 11G25

Additional Information

**Dragos Ghioca**

Affiliation:
Department of Mathematics & Statistics, Hamilton Hall, Room 218, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1

Address at time of publication:
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4

Email:
dghioca@math.mcmaster.ca

DOI:
https://doi.org/10.1090/S0002-9947-08-04388-2

Received by editor(s):
February 7, 2006

Received by editor(s) in revised form:
July 16, 2006

Published electronically:
February 27, 2008

Article copyright:
© Copyright 2008
American Mathematical Society