Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Semilinear hypoelliptic differential operators with multiple characteristics


Author: Nguyen Minh Tri
Journal: Trans. Amer. Math. Soc. 360 (2008), 3875-3907
MSC (2000): Primary 35H10; Secondary 35A08, 35B45, 35B65.
DOI: https://doi.org/10.1090/S0002-9947-08-04443-7
Published electronically: February 13, 2008
MathSciNet review: 2386250
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

In this paper we consider the regularity of solutions of semilinear differential equations principal parts of which consist of linear polynomial operators constructed from real vector fields. Based on the study of fine properties of the principal linear parts we then obtain the regularity of solutions of the nonlinear equations. Some results obtained in this article are also new in the frame of linear theory.


References [Enhancements On Off] (What's this?)

  • 1. S. Bernstein, Sur la nature analytique des solutions des équations aux dériveés partielles du second ordre, Math. Ann., 59 (1904), 20-76. MR 1511259
  • 2. A. Douglis, L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8 (1955), 503-538. MR 0075417 (17:743b)
  • 3. Yu. V. Egorov, Linear Differential Equations of Principal Type, Moscow, Nauka, 1984, 360. MR 776969 (86f:35001)
  • 4. Yu. V. Egorov, N. M. Tri, Maximally hypoelliptic operators with a noninvolutive characteristic set, DAN SSSR., 314 (1990), 1059-1061. MR 1116867 (92i:35034)
  • 5. Yu. V. Egorov, N. M. Tri, On a class of maximally hypoelliptic operators, Transactions Sem. Petrovskii, 17 (1994), 3-26. MR 1373419
  • 6. G. B. Folland, Applications of analysis on nilpotent groups to partial differential equations, Bull. Amer. Math. Soc., 83 (1977), 912-930. MR 0457928 (56:16132)
  • 7. A. Friedman, On classes of solutions of elliptic linear partial differential equations, Proc. Amer. Math. Soc., 8 (1957), 418-427. MR 0096894 (20:3376)
  • 8. B. Helffer, J. Nourrigat, Hypoellipticite Maximal pour des Operateurs Polynomes de Champ de Vecteur, Birkhauser (1985), 275 p. MR 897103 (88i:35029)
  • 9. L. Hörmander, The Analysis of Linear Partial Differential Operators, III, Springer-Verlag, Berlin, Heidelberg, 1985. MR 781536 (87d:35002a)
  • 10. L. Hörmander, Hypoelliptic second-order differential operators, Acta Math., 119 (1967), 147-171. MR 0222474 (36:5526)
  • 11. J. J. Kohn, Pseudo-differential operators and hypo-ellipticity, Proc. Symp. Pure Math., 23 (1973), 61-69. MR 0338592 (49:3356)
  • 12. J. J. Kohn, Hypoellipticity and loss of derivatives, Ann. of Math. (2) 162 (2005), 943-986. MR 2183286 (2006k:35036)
  • 13. C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, 1970, 370. MR 0284700 (44:1924)
  • 14. I. G. Petrovskii, Sur l'analyticite des solutions des syst"emes d'équations différentielles, Matem. Sbornik (N. S.), 5(47) (1939), 3-70.
  • 15. L. P. Rothschild, E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. MR 0436223 (55:9171)
  • 16. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, New Jersey: Princeton University Press, 1970. MR 0290095 (44:7280)
  • 17. M. Taylor, Pseudodifferential Operators, Princeton: Princeton University Press, 1981. MR 618463 (82i:35172)
  • 18. F. Treves, Introduction to Pseudo-Differential Operators and Fourier Integral Operators, Plenum Press, 1982. MR 597145 (82i:58068)
  • 19. V. T. T. Hien, N. M. Tri, Analyticity of solutions of semi-linear equations with double characteristics, J. Math. Anal. Appl., 337 (2008), 1249-1260.
  • 20. C. J. Xu, Regularity for quasilinear second-order subelliptic equations, Comm. Pure Appl. Math., 45 (1992), 77-96. MR 1135924 (93b:35042)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35H10, 35A08, 35B45, 35B65.

Retrieve articles in all journals with MSC (2000): 35H10, 35A08, 35B45, 35B65.


Additional Information

Nguyen Minh Tri
Affiliation: Institute of Mathematics, 18 Hoang Quoc Viet Road, Cau Giay District, 10307 Hanoi, Vietnam
Address at time of publication: Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
Email: triminh@math.ac.vn

DOI: https://doi.org/10.1090/S0002-9947-08-04443-7
Keywords: Semilinear differential equations, a priori estimates, maximal hypoellipticity, polynomial operators constructed from real vector fields.
Received by editor(s): August 15, 2006
Published electronically: February 13, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society