Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Weak uncertainty principle for fractals, graphs and metric measure spaces

Authors: Kasso A. Okoudjou, Laurent Saloff-Coste and Alexander Teplyaev
Journal: Trans. Amer. Math. Soc. 360 (2008), 3857-3873
MSC (2000): Primary 28A80, 42C99; Secondary 26D99
Published electronically: February 27, 2008
MathSciNet review: 2386249
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a new approach to formulate and prove the weak uncertainty inequality, which was recently introduced by Okoudjou and Strichartz. We assume either an appropriate measure growth condition with respect to the effective resistance metric, or, in the absence of such a metric, we assume the Poincaré inequality and reverse volume doubling property. We also consider the weak uncertainty inequality in the context of Nash-type inequalities. Our results can be applied to a wide variety of metric measure spaces, including graphs, fractals and manifolds.

References [Enhancements On Off] (What's this?)

  • 1. D. Bakry, T. Coulhon, M. Ledoux, and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), no. 4, 1033-1073. MR 1386760 (97c:46039)
  • 2. M. T. Barlow, Diffusion on Fractals, in: Lecture Notes in Mathematics, Vol. 1690, Springer, Berlin, 1998. MR 1668115 (2000a:60148)
  • 3. M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpiński carpet. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), 225-257. MR 1023950 (91d:60183)
  • 4. M. T. Barlow and R. F. Bass, On the resistance of the Sierpiński carpet. Proc. Roy. Soc. London Ser. A 431 (1990), 345-360. MR 1080496 (91h:28008)
  • 5. M. T. Barlow and R. F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets. Canad. J. Math., 51 (1999), 673-744. MR 1701339 (2000i:60083)
  • 6. M. T. Barlow and R. F. Bass, Random walks on graphical Sierpinski carpets,. Random walks and discrete potential theory (Cortona, 1997), 26-55, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999. MR 1802425 (2002c:60116)
  • 7. M. T. Barlow and R. F. Bass, Transition densities for Brownian motion of the Sierpinski carpet, Probab. Theory Relat. Fields, 91 (1992), 307-330. MR 1151799 (93k:60203)
  • 8. M. T. Barlow and R. F. Bass, Stability of parabolic Harnack inequalities. Trans. Amer. Math. Soc., 356 (2004), 1501-1533. MR 2034316 (2005e:60167)
  • 9. M. T. Barlow, R. F. Bass and T. Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan, 58 (2006), 485-519. MR 2228569 (2007f:60064)
  • 10. M. T. Barlow and J. Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. London Math. Soc., 56 (1997), no. 2, 320-332. MR 1489140 (99b:35162)
  • 11. P. Ciatti, F. Ricci, and M. Sundari, Heisenberg-Pauli-Weyl Uncertainty Inequalities and Polynomial Volume Growth, to appear in Advances in Mathematics.
  • 12. M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Anal., 1 (1992), 1-35. MR 1245223 (95b:31009)
  • 13. G. B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, J. Fourier Anal. Appl., 3 (1997), no. 3, 207-238. MR 1448337 (98f:42006)
  • 14. A. Grigoŕyan and A. Telcs, Sub-Gaussian estimates of heat kernels on infinite graphs, Duke Math. J., 109 (2001), no. 3, 451-510. MR 1853353 (2003a:35085)
  • 15. A. Grigoŕyan, J. Hu and K. Lau, Heat kernels on metric measure spaces and an application to semilinear elliptic equations, Trans. Amer. Math. Soc., 355 (2003), no. 5, 2065-2095. MR 1953538 (2003j:60103)
  • 16. A. Grigoŕyan, Heat kernel upper bounds on fractal spaces, preprint.
  • 17. B. M. Hambly and T. Kumagai, Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries, Proc. Symp. Pure Math., 72 (2004), 233-259. MR 2112125 (2005k:60141)
  • 18. J. Heinonen, ``Lectures on analysis on metric spaces,'' Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • 19. J. Kigami and M. L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 158 (1993), 93-125. MR 1243717 (94m:58225)
  • 20. J. Kigami, Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math. Soc. 335 (1993), 721-755. MR 1076617 (93d:39008)
  • 21. J. Kigami, Effective resistances for harmonic structures on p.c.f. self-similar sets. Math. Proc. Cambridge Philos. Soc. 115 (1994), 291-303. MR 1277061 (95h:28012)
  • 22. J. Kigami, ``Analysis on Fractals,'' Cambridge University Press, New York, 2001. MR 1840042 (2002c:28015)
  • 23. J. Kigami, Harmonic analysis for r esistance forms. J. Functional Analysis 204 (2003), 399-444. MR 2017320 (2004m:31010)
  • 24. J. Kigami, Local Nash inequality and inhomogeneity of heat kernels, Proc. London Math. Soc. (3) 89 (2004), 525-544. MR 2078700 (2005f:47105)
  • 25. B. Krön and E. Teufl, Asymptotics of the transition probabilities of the simple random walk on self-similar graphs, Trans. Amer. Math. Soc., 356 (2004), no. 1, 393-414. MR 2020038 (2004k:60130)
  • 26. S. Kusuoka and X. Y. Zhou, Dirichlet forms on fractals: Poincaré constant and resistance. Probab. Theory Related Fields 93 (1992), 169-196. MR 1176724 (94e:60069)
  • 27. S. Kusuoka and X. Zhou, Waves on fractal-like manifolds and effective energy propagation. Probab. Theory Related Fields 110 (1998), 473-495. MR 1626955 (99i:58148)
  • 28. L. Malozemov and A. Teplyaev, Pure point spectrum of the Laplacians on fractal graphs. J. Funct. Anal. 129 (1995), 390-405. MR 1327184 (96e:60114)
  • 29. L. Malozemov and A. Teplyaev, Self-similarity, operators and dynamics. Math. Phys. Anal. Geom. 6 (2003), 201-218. MR 1997913 (2004d:47012)
  • 30. K. A. Okoudjou and R. S. Strichartz, Weak uncertainty principles on fractals, J. Fourier Anal. Appl., 11 (2005), no. 3, 315-331. MR 2167172 (2006f:28011)
  • 31. J. F. Price and P. C. Racki, Local uncertainty inequalities for Fourier series, Proc. Amer. Math. Soc., 93 (1985), 245-251. MR 770530 (86e:42018)
  • 32. C. Sabot, Electrical networks, symplectic reductions, and application to the renormalization map of self-similar lattices. Fractal geometry and applications: A jubilee of Benoît Mandelbrot. Part 1, 155-205, Proc. Sympos. Pure Math. 72, Amer. Math. Soc., 2004. MR 2112106 (2005m:34202)
  • 33. C. Sabot, Laplace operators on fractal lattices with random blow-ups. Potential Anal. 20 (2004) 177-193. MR 2032947 (2004m:47082)
  • 34. C. Sabot, Spectral properties of self-similar lattices and iteration of rational maps. Mém. Soc. Math. Fr. (N.S.) No. 92 (2003), vi+104 pp. MR 1976877 (2004d:82016)
  • 35. C. Sabot, Pure point spectrum for the Laplacian on unbounded nested fractals. J. Funct. Anal. 173 (2000) 497-524. MR 1760624 (2001j:35216)
  • 36. L. Saloff-Coste, ``Aspects of Sobolev-type inequalities,'' London Mathematical Society Lecture Note Series, 289. Cambridge University Press, 2002. MR 1872526 (2003c:46048)
  • 37. R. S. Strichartz, Uncertainty principles in harmonic analysis, J. Funct. Anal., 84 (1989), 97-114. MR 999490 (91a:42017)
  • 38. R. S. Strichartz, Fractals in the large, Canad. J. Math., 50 (1998), no. 3, 638-657. MR 1629847 (99f:28015)
  • 39. R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc., 46 (1999), 1199-1208. MR 1715511 (2000i:58035)
  • 40. R. S. Strichartz, Function spaces on fractals, J. Funct. Anal., 198 (2003) 43-83. MR 1962353 (2003m:46058)
  • 41. R. S. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc. 355 (2003), 4019-4043. MR 1990573 (2004b:28013)
  • 42. R. S. Strichartz, Fractal Differential Equations: A Tutorial, Princeton University Press, 2006. MR 2246975 (2007f:35003)
  • 43. A. Teplyaev, Spectral Analysis on Infinite Sierpiński Gaskets, J. Funct. Anal., 159 (1998), 537-567. MR 1658094 (99j:35153)
  • 44. N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, ``Analysis and geometry on groups,'' Cambridge Tracts in Mathematics, 100, Cambridge University Press, Cambridge, 1992. MR 1218884 (95f:43008)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 28A80, 42C99, 26D99

Retrieve articles in all journals with MSC (2000): 28A80, 42C99, 26D99

Additional Information

Kasso A. Okoudjou
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742-4015

Laurent Saloff-Coste
Affiliation: Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853-4201

Alexander Teplyaev
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009

Keywords: Uncertainty principle, p.c.f. fractal, Heisenberg's inequality, measure metric spaces, Poincar{\'e} inequality, self-similar graphs, Sierpi{\'n}ski gasket, uniform finitely ramified graphs
Received by editor(s): August 15, 2006
Published electronically: February 27, 2008
Additional Notes: The second author was supported in part by NSF grant DMS-0603886
The third author was supported in part by NSF grant DMS-0505622
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society