Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sharp Morrey-Sobolev inequalities and the distance from extremals


Author: Andrea Cianchi
Journal: Trans. Amer. Math. Soc. 360 (2008), 4335-4347
MSC (2000): Primary 46E35, 46E30
DOI: https://doi.org/10.1090/S0002-9947-08-04491-7
Published electronically: March 14, 2008
MathSciNet review: 2395175
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Quantitative versions of sharp estimates for the supremum of Sobolev functions in $ W^{1,p}(\mathbb{R}^n)$, $ p>n$, with remainder terms depending on the distance from the families of extremals, are established.


References [Enhancements On Off] (What's this?)

  • [Ad] R.A.Adams, ``Sobolev spaces'', Academic Press, Orlando, 1975. MR 0450957 (56:9247)
  • [A] T.Aubin, Problèmes isopérimetriques et espaces de Sobolev, J. Diff. Geom 11 (1976), 573-598. MR 0448404 (56:6711)
  • [BFT] G.Barbatis, S.Filippas & A.Tertikas, A unified approach to improved $ L^p$ Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004), 2169-2196. MR 2048514 (2005a:26016)
  • [BWW] T.Bartsch, T.Weth & M.Willem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Part. Diff. Equat. 18 (2003), 57-75. MR 2018667 (2004h:35059)
  • [BE] G.Bianchi & H.Egnell, A note on the Sobolev inequality, J. Funct. Anal. 100 (1991), 18-24. MR 1124290 (92i:46033)
  • [BL] H.Brezis & E.Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal. 62 (1985), 73-86. MR 790771 (86i:46033)
  • [BN] H.Brezis & L.Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. MR 709644 (84h:35059)
  • [BZ] J.E.Brothers & W.P.Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math 384 (1988), 153-179. MR 929981 (89g:26013)
  • [C] A. Cianchi, A quantitative Sobolev inequality in $ BV$, J. Funct. Anal. 237 (2006), 466-481. MR 2230346 (2007b:46053)
  • [CEFT] A.Cianchi, L.Esposito, N.Fusco & C.Trombetti, A quantitative Pólya-Szegö principle, J. Reine Angew. Math. 614 (2008).
  • [CF] A.Cianchi & N.Fusco, Dirichlet integrals and Steiner asymmetry, Bull. Sci. Math. 130 (2006), 675-696. MR 2276198
  • [CFMP] A.Cianchi, N.Fusco, F.Maggi & A.Pratelli, The sharp Sobolev inequality in quantitative form, preprint.
  • [DHA] A.Detella, T.Horiuchi & H.Ando, Missing terms in Hardy-Sobolev inequalities and its applications, Far East J. Math. Sci. 14 (2004), 333-359. MR 2108051 (2005h:26027)
  • [FF] H.Federer & W.Fleming, Normal and integral currents, Annals of Math. 72 (1960), 458-520. MR 0123260 (23:A588)
  • [FV] A.Ferone & R.Volpicelli, Minimal rearrangements of Sobolev functions: a new proof, Ann. Inst. H.Poincaré, Anal. Nonlinéaire 20 (2003), 333-339. MR 1961519 (2004c:46051)
  • [FMT] S.Filippas, V.G.Maz'ya & A.Tertikas, On a question of Brezis and Marcus, Calc. Var. Part. Diff. Equat. 25 (2006), 491-501. MR 2214621 (2006m:26046)
  • [GGS] F.Gazzola, H.C.Grunau & M.Squassina, Existence and non existence results for critical growth biharmonic elliptic equations, Calc. Var. Part. Diff. Equat. 18 (2003), 117-143. MR 2010961 (2004j:35083)
  • [H] K.Hilden, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manus. Math. 18 (1976), 215-235. MR 0409773 (53:13525)
  • [K] B.Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Math. 1150, Springer-Verlag, Berlin, 1985. MR 810619 (87a:35001)
  • [M1] V.G.Maz'ya, Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR 133 (1960), 527-530 (Russian); English translation: Soviet Math. Dokl. 1 (1960), 882-885. MR 0126152 (23:A3448)
  • [M2] V.G.Maz'ya, ``Sobolev spaces'', Springer-Verlag, Berlin, 1985. MR 817985 (87g:46056)
  • [S] E. Sperner, Symmetrisierung für Funktionen mehrerer reeller Variablen, Manus. Math. 11 (1974), 159-170. MR 0328000 (48:6342)
  • [T1] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372. MR 0463908 (57:3846)
  • [T2] G.Talenti, Inequalities in rearrangement invariant function spaces, in Nonlinear analysis, function spaces and applications, Vol. 5, M.Krbec, A.Kufner, B.Opic and J.Rákosnik Eds., Prometheus Publishing House, Prague, 1994. MR 1322306 (95i:00033)
  • [Z] W.P.Ziemer, ``Weakly differentiable functions'', Springer-Verlag, New York, 1989. MR 1014685 (91e:46046)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46E35, 46E30

Retrieve articles in all journals with MSC (2000): 46E35, 46E30


Additional Information

Andrea Cianchi
Affiliation: Dipartimento di Matematica e Applicazioni per l’Architettura, Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy
Email: cianchi@unifi.it

DOI: https://doi.org/10.1090/S0002-9947-08-04491-7
Keywords: Sobolev inequalities, remainder terms, symmetrizations.
Received by editor(s): August 18, 2006
Published electronically: March 14, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society