Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems


Authors: James Colliander, Justin Holmer and Nikolaos Tzirakis
Journal: Trans. Amer. Math. Soc. 360 (2008), 4619-4638
MSC (2000): Primary 35Q55
DOI: https://doi.org/10.1090/S0002-9947-08-04295-5
Published electronically: April 11, 2008
MathSciNet review: 2403699
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove low regularity global well-posedness for the 1d Zakharov system and the 3d Klein-Gordon-Schrödinger system, which are systems in two variables $ u:\mathbb{R}_x^d\times \mathbb{R}_t \to \mathbb{C}$ and $ n:\mathbb{R}^d_x\times \mathbb{R}_t\to \mathbb{R}$. The Zakharov system is known to be locally well-posed in $ (u,n)\in L^2\times H^{-1/2}$ and the Klein-Gordon-Schrödinger system is known to be locally well-posed in $ (u,n)\in L^2\times L^2$. Here, we show that the Zakharov and Klein-Gordon-Schrödinger systems are globally well-posed in these spaces, respectively, by using an available conservation law for the $ L^2$ norm of $ u$ and controlling the growth of $ n$ via the estimates in the local theory.


References [Enhancements On Off] (What's this?)

  • 1. Takafumi, Akahori, Global solutions of the wave-Schrödinger system with rough data, Commun. Pure Appl. Anal. 4 (2005), no. 2, 209-240.
  • 2. Daniella Bekiranov, Takayoshi Ogawa, and Gustavo Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2907-2919. MR 1403113 (97m:35238)
  • 3. Daniella Bekiranov, Takayoshi Ogawa, and Gustavo Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal. 158 (1998), no. 2, 357-388. MR 1648479 (99i:35143)
  • 4. J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res. Notices (1996), no. 11, 515-546. MR 1405972 (97h:35206)
  • 5. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107-156.
  • 6. J. Bourgain, Refinements of Strichartz' inequality and applications to $ 2$D-NLS with critical nonlinearity, Internat. Math. Res. Notices (1998), no. 5, 253-283. MR 1616917 (99f:35184)
  • 7. M. Christ, J. Colliander, and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, arxiv.org preprint, http://www.arxiv.org/abs/math.AP/0311048.
  • 8. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett. 9 (2002), no. 5-6, 659-682. MR 1906069 (2003j:35294)
  • 9. A.J. Corcho and F. Linares, Well-posedness for the Schrödinger-Korteweg-de Vries system, Trans. Amer. Math. Soc. 359 (2007), no. 9, 4089-4106. MR 2309177
  • 10. L. Glangetas and F. Merle, Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two. II, Comm. Math. Phys. 160 (1994), no. 2, 349-389. MR 1262202 (95e:35196)
  • 11. J. Ginibre, Y. Tsutsumi, and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), no. 2, 384-436. MR 1491547 (2000c:35220)
  • 12. J. Holmer, Local ill-posedness for the 1D Zakharov system, Electron. J. Differential Equations, 2007, no. 24, 22 pp. (electronic). MR 2299578 (2007k:35465)
  • 13. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955-980.
  • 14. C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573-603. MR 1329387 (96k:35159)
  • 15. -, Quadratic forms for the $ 1$-D semilinear Schrödinger equation, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3323-3353. MR 1357398 (96j:35233)
  • 16. H. Pecher, Global well-posedness below energy space for the 1-dimensional Zakharov system, Internat. Math. Res. Notices (2001), no. 19, 1027-1056. MR 1857386 (2002j:35036)
  • 17. -, Global solutions of the Klein-Gordon-Schrödinger system with rough data, Differential Integral Equations 17 (2004), no. 1-2, 179-214. MR 2035502
  • 18. -, Global solutions with infinite energy for the one-dimensional Zakharov system, Electron. J. Differential Equations (2005), No. 41, 18 pp. (electronic). MR 2135252
  • 19. -, Rough solutions of a Schrödinger-Benjamin-Ono system, Differential Integral Equations, 19 (2006), no. 5, 517-535. MR 2235139 (2007h: 35319)
  • 20. -, The Cauchy problem for a Schrödinger-Korteweg-de Vries system with rough data, Differential Integral Equations, 18 (2005), no. 10, 1147-1174. MR 2162627 (2006j:35210)
  • 21. R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714.
  • 22. N. Tzirakis, The Cauchy problem for the Klein-Gordon-Schrödinger system in low dimensions below the energy space, Communications in PDE 30 (2005), no. 5-6, 605-641. MR 2153510 (2006k:35280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35Q55

Retrieve articles in all journals with MSC (2000): 35Q55


Additional Information

James Colliander
Affiliation: Department of Mathematics, University of Toronto, 40 St. George St., Toronto, Ontario, Canada M5S 2E4

Justin Holmer
Affiliation: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720

Nikolaos Tzirakis
Affiliation: Department of Mathematics, University of Toronto, 40 St. George St., Toronto, Ontario, Canada M5S 2E4
Address at time of publication: Department of Mathematics, University of Illinois, 1409 Green St., Urbana, Illinois 61801

DOI: https://doi.org/10.1090/S0002-9947-08-04295-5
Keywords: Zakharov system, Klein-Gordon-Schr\"odinger system, global well-posedness
Received by editor(s): March 27, 2006
Received by editor(s) in revised form: April 17, 2006
Published electronically: April 11, 2008
Additional Notes: The first author was partially supported by N.S.E.R.C. Grant RGPIN 250233-03 and the Sloan Foundation.
The second author was supported by an NSF postdoctoral fellowship.
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society