Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Equidistribution and integral points for Drinfeld modules

Authors: D. Ghioca and T. J. Tucker
Journal: Trans. Amer. Math. Soc. 360 (2008), 4863-4887
MSC (2000): Primary 11G50; Secondary 11J68, 37F10
Published electronically: April 16, 2008
MathSciNet review: 2403707
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the local height of a point on a Drinfeld module can be computed by averaging the logarithm of the distance to that point over the torsion points of the module. This gives rise to a Drinfeld module analog of a weak version of Siegel's integral points theorem over number fields and to an analog of a theorem of Schinzel's regarding the order of a point modulo certain primes.

References [Enhancements On Off] (What's this?)

  • [Ber90] V. G. Berkovich, Spectral theory and analytic geometry over nonarchimedean fields, AMS Mathematical Surveys and Monographs, American Mathematical Society, Providence, 1990. MR 1070709 (91k:32038)
  • [BIR05] M. Baker, S. I. Ih, and R. Rumely, A finiteness property of torsion points, 2005, preprint, available at arxiv:math.NT/0509485, 30 pages.
  • [Bos99] V. Bosser, Minorations de formes linéaires de logarithmes pour les modules de Drinfeld, J. Number Theory 75 (1999), no. 2, 279-323. MR 1681633 (2000b:11090)
  • [Bos00] -, Transcendance et approximation diophantienne sur les modules de Drinfeld, Ph.D. thesis, Université Paris 6, 2000.
  • [Bos02] -, Hauteurs normalisées des sous-variétés de produits de modules de Drinfeld, Compositio Math. 133 (2002), no. 3, 323-353. MR 1930981 (2003g:11062)
  • [BR06] M. Baker and R. Rumely, Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), 625-688. MR 2244226
  • [Bro65] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. MR 0194595 (33:2805)
  • [CG97] G. S. Call and S. Goldstine, Canonical heights on projective space, J. Number Theory 63 (1997), 211-243. MR 1443758 (98c:11060)
  • [CL06] A. Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine. Angew. Math 595 (2006), 215-235. MR 2244803
  • [Den92a] L. Denis, Géométrie diophantienne sur les modules de Drinfeld, The arithmetic of function fields (Columbus, OH, 1991), Ohio State Univ. Math. Res. Inst. Publ., vol. 2, de Gruyter, Berlin, 1992, pp. 285-302. MR 1196525 (93j:11033)
  • [Den92b] -, Hauteurs canoniques et modules de Drinfeld, Math. Ann. 294 (1992), no. 2, 213-223. MR 1183402 (94d:11038)
  • [FLM83] A. Freire, A. Lopes, and R. Mañe, An invariant measure for rational functions, Boletim da Sociedade Brasileira de Matematica 14 (1983), 45-62. MR 736568 (85m:58110b)
  • [FRL] C. Favre and J. Rivera-Letelier, Équidistribution des points de petite hauteur, to appear in Math. Ann. MR 2221116 (2007g:11074)
  • [FRL04] -, Théorème d'équidistribution de Brolin en dynamique $ p$-adique, C. R. Math. Acad. Sci. Paris 339 (2004), no. 4, 271-276. MR 2092012 (2005f:37090)
  • [Ghi05] D. Ghioca, The Mordell-Lang theorem for Drinfeld modules, Int. Math. Res. Not. (2005), no. 53, 3273-3307.
  • [Ghi06] D. Ghioca, Equidistribution for torsion points of a Drinfeld module, Math. Ann. 336 (2006), no. 4, 841-865. MR 2255176 (2007g:11063)
  • [Ghi07a] -, The local Lehmer inequality for Drinfeld modules, J. Number Theory 123 (2007), no. 2, 426-455. MR 2301224
  • [Ghi07b] -, The Tate-Voloch conjecture for Drinfeld modules, J. Number Theory 125 (2007), no. 1, 85-94. MR 2333120
  • [Gos96] D. Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131 (97i:11062)
  • [GT07] D. Ghioca and T. J. Tucker, Siegel's theorem for Drinfeld modules, Math. Ann. 339 (2007), no. 1, 37-60. MR 2317762
  • [Hsi] L.-C. Hsia, On the reduction of a non-torsion point of a Drinfeld module, preprint.
  • [Lyu83] M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385. MR 741393 (85k:58049)
  • [Mah60] K. Mahler, An application of Jensen's formula to polynomials, Mathematica 7 (1960), 98-100. MR 0124467 (23:A1779)
  • [Mañ88] R. Mañe, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical Systems, Valparaiso 1986 (R. Bamon, R. Labarca, and J. Palis, eds.), Springer-Verlag, 1988, pp. 86-117. MR 961095 (90j:58073)
  • [Osg75] C. F. Osgood, Effective bounds on the ``Diophantine approximation'' of algebraic functions over fields of arbitrary characteristic and applications to differential equations, Nederl. Akad. Wetensch. Proc. Ser. A 78=Indag. Math. 37 (1975), 105-119. MR 0387204 (52:8048a)
  • [Pin04] R. Pink, On the order of the reduction of a point on an abelian variety, Math. Ann. 330 (2004), no. 2, 275-291. MR 2089426 (2005g:11101)
  • [Poo95] B. Poonen, Local height functions and the Mordell-Weil theorem for Drinfeld modules, Compositio Math. 97 (1995), no. 3, 349-368. MR 1353279 (96k:11075)
  • [PST04] J. Piñeiro, L. Szpiro, and T. Tucker, Mahler measure for dynamical systems on $ \mathbb{P}^{1}$ and intersection theory on a singular arithmetic surface, Geometric methods in algebra and number theory (F. Bogomolov and Y. Tschinkel, eds.), Progress in Mathematics 235, Birkhäuser, 2004, pp. 219-250. MR 2166086 (2006f:14026)
  • [Rot55] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20, corrigendum, ibid. 2 (1955), 168. MR 0072182 (17:242d)
  • [Sca02] T. Scanlon, Diophantine geometry of the torsion of a Drinfeld module, J. Number Theory 97 (2002), no. 1, 10-25. MR 1939133 (2003h:11063)
  • [Sch74] A. Schinzel, Primitive divisors of the expression $ a\sp{n}-b\sp{n}$ in algebraic number fields, J. Reine Angew. 268/269 (1974), 27-33, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II. MR 0344221 (49:8961)
  • [Ser97] J.-P. Serre, Lectures on the Mordell-Weil theorem, third ed., Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997, Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, with a foreword by Brown and Serre. MR 1757192 (2000m:11049)
  • [Sie29] C. L. Siegel, Über einige anwendungen diophantisher approximationen, Abh. Preuss. Akad. Wiss. Phys. Math. Kl. (1929), 41-69.
  • [Sil93] J. H. Silverman, Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. 71 (1993), no. 3, 793-829. MR 1240603 (95e:11070)
  • [ST] L. Szpiro and T. J. Tucker, Equidistribution and generalized Mahler measures, preprint, Available at, 29 pages.
  • [SUZ97] L. Szpiro, E. Ullmo, and S. Zhang, Equirépartition des petits points, Invent. Math. 127 (1997), 337-347. MR 1427622 (98i:14027)
  • [Tag93] Y. Taguchi, Semi-simplicity of the Galois representations attached to Drinfeld modules over fields of ``infinite characteristics'', J. Number Theory 44 (1993), no. 3, 292-314. MR 1233291 (94k:11064)
  • [Vol90] J. F. Voloch, Explicit $ p$-descent for elliptic curves in characteristic $ p$, Compos. Math. (1990), no. 74, 247-258. MR 1055695 (91f:11042)
  • [Vol91] -, On the conjectures of Mordell and Lang in positive characteristic, Invent. Math. (1991), no. 104, 643-646. MR 1106753 (92d:11067)
  • [Vol97] -, Diophantine geometry in characteristic $ p$: a survey, Arithmetic geometry (Cortona, 1994), Sympos. Math., 37, Cambridge Univ. Press, Cambridge, 1997, pp. 260-278. MR 1472501 (99c:11081)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G50, 11J68, 37F10

Retrieve articles in all journals with MSC (2000): 11G50, 11J68, 37F10

Additional Information

D. Ghioca
Affiliation: Department of Mathematics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
Address at time of publication: Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4

T. J. Tucker
Affiliation: Department of Mathematics, Hylan Building, University of Rochester, Rochester, New York 14627

Keywords: Drinfeld module, heights, Diophantine approximation
Received by editor(s): September 5, 2006
Published electronically: April 16, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society