Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conformal cochains


Author: Scott O. Wilson
Journal: Trans. Amer. Math. Soc. 360 (2008), 5247-5264
MSC (2000): Primary 57R57, 32G20; Secondary 30F99
DOI: https://doi.org/10.1090/S0002-9947-08-04556-X
Published electronically: April 10, 2008
Addendum: Tran. Amer. Math. Soc. 365 (2013), 5033-5034
MathSciNet review: 2415073
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we define holomorphic cochains and an associated period matrix for triangulated closed topological surfaces. We use the combinatorial Hodge star operator introduced in the author's paper of 2007, which depends on the choice of an inner product on the simplicial 1-cochains.

We prove that for a triangulated Riemannian 2-manifold (or a Riemann surface), and a particularly nice choice of inner product, the combinatorial period matrix converges to the (conformal) Riemann period matrix as the mesh of the triangulation tends to zero.


References [Enhancements On Off] (What's this?)

  • 1. Dodziuk, J. ``Finite-Difference Approach to the Hodge Theory of Harmonic Forms,'' Amer. J. of Math. 98 No. 1 (1976) 79-104. MR 0407872 (53:11642)
  • 2. Dodziuk J. and Patodi V. K. ``Riemannian Structures and Triangulations of Manifolds,'' Journal of Indian Math. Soc. 40 (1976) 1-52. MR 0488179 (58:7742)
  • 3. Dupont, J. ``Curvature and Characteristic Classes,'' Lecture Notes in Mathematics, vol. 640, Springer-Verlag (1978). MR 0500997 (58:18477)
  • 4. Eckmann, B. ``Harmonische Funktionnen und Randvertanfgaben in einem Komplex,'' Commentarii Math. Helvetici, 17 (1944-45), 240-245. MR 0013318 (7:138f)
  • 5. Farkas, H. and Kra, I. ``Riemann Surfaces,'' Springer-Verlag (1991). MR 1139765 (93a:30047)
  • 6. Gu, X. and Yau, S.T. ``Computing Conformal Structures of Surfaces,'' Comm. Inf. Sys. 2 No. 2 (2002) 121-146. MR 1958012 (2003m:65023)
  • 7. Manin, Y. ``The Partition Function of the Polyakov String can be Expressed in Terms of Theta-Functions,'' Phys. Lett. B 172 No. 2 (1986) 184-185. MR 844733 (87k:81120)
  • 8. Costa-Santos, R. and McCoy, B.M. ``Finite Size Corrections for the Ising Model on Higher Genus Triangular Lattices,'' J. Statist. Phys. 112 Nos. 5-6 (2003) 889-920. MR 2000227 (2004h:82021)
  • 9. Mercat, C. ``Discrete Riemann Surfaces and the Ising Model,'' Comm. Math. Phys. 218 (2001), No. 1, 177-216. MR 1824204 (2002c:82019)
  • 10. Mercat, C. ``Discrete period Matrices and Related Topics,'' arxiv.org math-ph/0111043, June 2002.
  • 11. Mercat, C. ``Discrete Polynomials and Discrete Holomorphic Approximation,'' arxiv.org math-ph/0206041.
  • 12. Ranicki, A. and Sullivan, D. ``A Semi-local Combinatorial Formula for the Signature of a $ 4k$-manifold,'' J. Diff. Geometry, Vol. II (1976), 23-29. MR 0423366 (54:11345)
  • 13. Smits, L. `` Combinatorial Approximation to the Divergence of 1-forms on Surfaces,'' Israel J. of Math. 75 (1991) 257-271. MR 1164593 (93d:57052)
  • 14. Spivak, M. A. ``Comprehensive Introduction to Differential Geometry,'' Vol. IV, Publish or Perish Inc., Boston, MA, 1975. MR 0394452 (52:15254a)
  • 15. Springer, G. ``Introduction to Riemann Surfaces,'' Addison-Wesley Publ. Company (1957). MR 0092855 (19:1169g)
  • 16. Whitney, H. ``Geometric Integration Theory,'' Princeton Univ. Press (1957). MR 0087148 (19:309c)
  • 17. Whitney, H. ``On Products in a Complex,'' Annals of Math. (2) 39 (1938) 397-432. MR 1503416
  • 18. Wilson, S.O. ``Cochain Algebra on Manifolds and Convergence Under Refinement,'' Topology and Its Applications 154 No. 9 (2007) 1898-1920. MR 2319262

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57R57, 32G20, 30F99

Retrieve articles in all journals with MSC (2000): 57R57, 32G20, 30F99


Additional Information

Scott O. Wilson
Affiliation: School of Mathematics, University of Minnesota-Twin Cities, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, Minnesota 55455
Email: scottw@math.umn.edu

DOI: https://doi.org/10.1090/S0002-9947-08-04556-X
Keywords: Cochains, Hodge-star, Riemann surface, period matrices
Received by editor(s): August 8, 2006
Published electronically: April 10, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society