Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ C_{0}$-coarse geometry of complements of Z-sets in the Hilbert cube


Authors: E. Cuchillo-Ibáñez, J. Dydak, A. Koyama and M. A. Morón
Journal: Trans. Amer. Math. Soc. 360 (2008), 5229-5246
MSC (2000): Primary 18B30, 54D35, 54E15; Secondary 54C55, 54E35, 54F45
DOI: https://doi.org/10.1090/S0002-9947-08-04603-5
Published electronically: May 20, 2008
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by the Chapman Complement Theorem, we construct an isomorphism between the topological category of compact Z-sets in the Hilbert cube $ Q$ and the $ C_{0}$-coarse category of their complements. The $ C_{0}$-coarse morphisms are, in this particular case, intrinsically related to uniformly continuous proper maps. Using that fact we are able to relate in a natural way some of the topological invariants of Z-sets to the geometry of their complements.


References [Enhancements On Off] (What's this?)

  • 1. M. Alonso-Morón and A. González Gómez, The Hausdorff metric and classifications of compacta, Bull. London Math. Soc. 38 (2006), 314-322. MR 2215924 (2006m:54019)
  • 2. K. Borsuk, Theory of retracts, PWN-Polish Scientific Publishers, Warsaw, 1967.MR 0216473 (35:7306)
  • 3. T.A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), 181-193. MR 0320997 (47:9530)
  • 4. T.A. Chapman, Lectures on Hilbert cube manifolds, American Mathematical Society, 1976. MR 0423357 (54:11336)
  • 5. T.A. Chapman and L. Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976), 171-208. MR 0425973 (54:13922)
  • 6. A. Dranishnikov, Asymptotic Topology, Russian Math. Surveys 55 (2000), no. 6, 71-116. MR 1840358 (2002j:55002)
  • 7. B. Grave, Asymptotic dimension of coarse spaces, available at http://www.uni-math. gwdg.de/bgr/veroeffentl/, 2004.
  • 8. M. Gromov, Asymptotic invariants of infinite groups, London Math. Soc. Lecture Notes 182 (1993). MR 1253544 (95m:20041)
  • 9. S-T. Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977 (31:6202)
  • 10. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, NJ, 1941. MR 0006493 (3:312b)
  • 11. P. Mrozik, Hereditary shape equivalences and complement theorems, Topology Appl. 22 (1986), 131-137. MR 836320 (88a:57030)
  • 12. J. Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Memoirs of the American Mathematical Society 497, 1993. MR 1147350 (94a:58193)
  • 13. J. Roe, Index Theory, Coarse Geometry, and Topology of Manifolds, volume 90 of CBMS Conference Proceedings. American Mathematical Society, Providence, R.I., 1996. MR 1399087 (97h:58155)
  • 14. J. Roe, Lectures on Coarse Geometry, American Mathematical Society, 2003. MR 2007488 (2004g:53050)
  • 15. N. Wright, $ C_{0}$ coarse geometry, Ph.D. thesis, Penn State, 2002.
  • 16. N. Wright, $ C_{0}$ coarse geometry and scalar curvature, J. Funct. Anal. 197 (2003), 469-488. MR 1960422 (2003m:58034)
  • 17. N. Wright, The coarse Baum-Connes conjecture via $ C_{0}$ coarse geometry, J. Funct. Anal. 220 (2005), 265-303. MR 2119281 (2006d:58023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 18B30, 54D35, 54E15, 54C55, 54E35, 54F45

Retrieve articles in all journals with MSC (2000): 18B30, 54D35, 54E15, 54C55, 54E35, 54F45


Additional Information

E. Cuchillo-Ibáñez
Affiliation: Departamento Matemática Aplicada, E.T.S.I. Montes, Universidad Politécnica, 28040 Madrid, Spain
Email: eduardo.cuchillo@upm.es

J. Dydak
Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996
Email: dydak@math.utk.edu

A. Koyama
Affiliation: Department of Mathematics, Shizuoka University, Shizuoka, Japan
Email: sakoyam@ipc.shizuoka.ac.jp

M. A. Morón
Affiliation: Departamento Geometría y Topología, Facultad de Cc.Matemáticas, Universidad Complutense, 28040 Madrid, Spain
Email: ma\_moron@mat.ucm.es

DOI: https://doi.org/10.1090/S0002-9947-08-04603-5
Keywords: Covering dimension, asymptotic dimension, $C_{0}$-coarse structure, ANR-space, $C_{0}$-coarse morphism, uniformly continuous map, compact Z-set, Higson-Roe compactification and corona.
Received by editor(s): July 17, 2006
Published electronically: May 20, 2008
Additional Notes: The first and fourth named authors were supported by the MEC, MTM2006-0825.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society