Low regularity solutions for a 2D quadratic nonlinear Schrödinger equation

Authors:
Ioan Bejenaru and Daniela De Silva

Journal:
Trans. Amer. Math. Soc. **360** (2008), 5805-5830

MSC (2000):
Primary 35Q55

Published electronically:
June 19, 2008

MathSciNet review:
2425697

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish that the initial value problem for the quadratic non-linear Schrödinger equation

**1.**Ioan Bejenaru and Terence Tao,*Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation*, J. Funct. Anal.**233**(2006), no. 1, 228–259. MR**2204680**, 10.1016/j.jfa.2005.08.004**2.**I. Bejenaru,*Quadratic Nonlinear Derivative Schrödinger Equations - Part 2*, preprint available on arxiv.**3.**Björn Birnir, Carlos E. Kenig, Gustavo Ponce, Nils Svanstedt, and Luis Vega,*On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations*, J. London Math. Soc. (2)**53**(1996), no. 3, 551–559. MR**1396718**, 10.1112/jlms/53.3.551**4.**J. Bourgain,*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations*, Geom. Funct. Anal.**3**(1993), no. 2, 107–156. MR**1209299**, 10.1007/BF01896020**5.**Thierry Cazenave and Fred B. Weissler,*The Cauchy problem for the critical nonlinear Schrödinger equation in 𝐻^{𝑠}*, Nonlinear Anal.**14**(1990), no. 10, 807–836. MR**1055532**, 10.1016/0362-546X(90)90023-A**6.**J. E. Colliander, J.-M. Delort, C. E. Kenig, and G. Staffilani,*Bilinear estimates and applications to 2D NLS*, Trans. Amer. Math. Soc.**353**(2001), no. 8, 3307–3325 (electronic). MR**1828607**, 10.1090/S0002-9947-01-02760-X**7.**M. Christ, J. Colliander, T. Tao,*Low-regularity ill-posedness for nonlinear Schrödinger and wave equations*, preprint.**8.**Carlos E. Kenig, Gustavo Ponce, and Luis Vega,*Quadratic forms for the 1-D semilinear Schrödinger equation*, Trans. Amer. Math. Soc.**348**(1996), no. 8, 3323–3353. MR**1357398**, 10.1090/S0002-9947-96-01645-5**9.**Carlos E. Kenig, Gustavo Ponce, and Luis Vega,*On the ill-posedness of some canonical dispersive equations*, Duke Math. J.**106**(2001), no. 3, 617–633. MR**1813239**, 10.1215/S0012-7094-01-10638-8**10.**Tosinobu Muramatu and Shifu Taoka,*The initial value problem for the 1-D semilinear Schrödinger equation in Besov spaces*, J. Math. Soc. Japan**56**(2004), no. 3, 853–888. MR**2071676**, 10.2969/jmsj/1191334089**11.**Kenji Nakanishi, Hideo Takaoka, and Yoshio Tsutsumi,*Counterexamples to bilinear estimates related with the KdV equation and the nonlinear Schrödinger equation*, Methods Appl. Anal.**8**(2001), no. 4, 569–578. IMS Conference on Differential Equations from Mechanics (Hong Kong, 1999). MR**1944182**, 10.4310/MAA.2001.v8.n4.a7**12.**Daniel Tataru,*Local and global results for wave maps. I*, Comm. Partial Differential Equations**23**(1998), no. 9-10, 1781–1793. MR**1641721**, 10.1080/03605309808821400**13.**Terence Tao,*Multilinear weighted convolution of 𝐿²-functions, and applications to nonlinear dispersive equations*, Amer. J. Math.**123**(2001), no. 5, 839–908. MR**1854113****14.**Yoshio Tsutsumi,*𝐿²-solutions for nonlinear Schrödinger equations and nonlinear groups*, Funkcial. Ekvac.**30**(1987), no. 1, 115–125. MR**915266**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
35Q55

Retrieve articles in all journals with MSC (2000): 35Q55

Additional Information

**Ioan Bejenaru**

Affiliation:
Department of Mathematics, University of California, Los Angeles, California 90095

Address at time of publication:
Department of Mathematics, Texas A & M University, College Station, Texas 77843

**Daniela De Silva**

Affiliation:
Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218

Address at time of publication:
Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027

DOI:
https://doi.org/10.1090/S0002-9947-08-04415-2

Received by editor(s):
August 21, 2006

Published electronically:
June 19, 2008

Additional Notes:
The authors were partially supported by the Mathematical Sciences Research Institute (MSRI) at Berkeley.

Article copyright:
© Copyright 2008
American Mathematical Society