Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Random walks on periodic graphs


Authors: Takahiro Kazami and Kôhei Uchiyama
Journal: Trans. Amer. Math. Soc. 360 (2008), 6065-6087
MSC (2000): Primary 60G50; Secondary 60J45
DOI: https://doi.org/10.1090/S0002-9947-08-04451-6
Published electronically: June 16, 2008
MathSciNet review: 2425703
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns random walks on periodic graphs embedded in the $ d$-dimensional Euclidian space $ \mathbf{R}^d$ and obtains asymptotic expansions of the Green functions of them up to the second order term, which, expressed fairly explicitly, are easily computable for many examples. The result is used to derive an asymptotic form of the hitting distribution of a hyperplane of co-dimension one, which involves not only the first but also second order terms of the expansion of the Green function. We also give similar expansions of the transition probabilities of the walks.


References [Enhancements On Off] (What's this?)

  • 1. BABILLOT, M (1988) Théorie du renouvellement pour des chaînes semi-markoviennes transientes, Ann. Inst. H. Poincaré (4) 24, 507-569. MR 978023 (90h:60082)
  • 2. CINLAR, M (1972) Markov additive processes I, II, Z. Wahr.verw. Beb. 24, 85-93, 95-121. MR 0329047 (48:7389)
  • 3. GIVARC'H, Y (1984) Application d'un théoreme limite local à la transience et à la récurrence des marches de Markov, Lecture Notes, n. 1096, 301-332, Springer-Verlag.
  • 4. KEILSON, J AND WISHART, D M G (1964) A central limit theorem for processes defined on a finite Markov chain, Proc. Cambridge Philos. Soc. 60, 547-567. MR 0169271 (29:6523)
  • 5. KRÁMLI, A AND SZÁSZ, D (1983) Random walks with internal degrees of freedom, Z. Wahr. verw. Gebiete, 63, 85-95. MR 699788 (85f:60098)
  • 6. KOTANI, M, SHIRAI, T AND SUNADA, T (1998) Asymptotic behavior of the transition probability of a random walk on an infinite graph, J. Func. Anal. 159, 664-689. MR 1658100 (2000c:60058)
  • 7. KOTANI, M AND SUNADA, T (2000) A central limit theorem for the simple random walk on a crystal lattice, Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), 1-6, Int. Soc. Anal. Appl. Comput., 7, Kluwer Acad. Publ., Dordrecht. MR 1940777 (2003h:60036)
  • 8. KOTANI, M AND SUNADA, T (2000) Albanese maps and off diagonal long time asymptotics for the heat kernel, Comm. Math. Phys. 209, 633-670. MR 1743611 (2001h:58036)
  • 9. TAKENAMI, T (2004) Local limit theorem for random walk in periodic environment, Osaka Jour. Math. 39, 867-895. MR 1951520 (2004a:60093)
  • 10. SPITZER, F (1964) Principles of Random Walks, Van Nostrand, Princeton. MR 0171290 (30:1521)
  • 11. UCHIYAMA, K (1998) Green's functions for random walks on $ \mathbf{Z}^d$, Proc. London Math. Soc. 77, 215-240. MR 1625467 (99f:60132)
  • 12. UCHIYAMA, K (2007) Asymptotic estimates of Green's functions and transition probabilities for Markov additive processes, Elec. J. Probab. 12 (2007), 138-180. MR 2299915

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 60G50, 60J45

Retrieve articles in all journals with MSC (2000): 60G50, 60J45


Additional Information

Takahiro Kazami
Affiliation: Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro Tokyo, 152-8551 Japan
Email: uchiyama@math.titech.ac.jp

Kôhei Uchiyama
Affiliation: Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro Tokyo, 152-8551 Japan

DOI: https://doi.org/10.1090/S0002-9947-08-04451-6
Keywords: Asymptotic expansion, Markov additive process, periodic graph, Green function, hitting distribution of a line
Received by editor(s): July 26, 2006
Received by editor(s) in revised form: November 21, 2006
Published electronically: June 16, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society