Quadratic nonlinear derivative Schrödinger equations - Part 2

Author:
Ioan Bejenaru

Journal:
Trans. Amer. Math. Soc. **360** (2008), 5925-5957

MSC (2000):
Primary 35Q55

DOI:
https://doi.org/10.1090/S0002-9947-08-04471-1

Published electronically:
June 5, 2008

MathSciNet review:
2425697

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider the local well-posedness theory for the quadratic nonlinear Schrödinger equation with low regularity initial data in the case when the nonlinearity contains derivatives. We work in dimensions and prove a local well-posedness result for small initial data with low regularity.

**1.**I. Bejenaru,*Quadratic Nonlinear Derivative Schrödinger Equations - Part 1*,*International Math. Res. Papers*, Volume 2006 (2006), Article ID 70630, 84 pages MR**2235496 (2007e:35254)****2.**I. Bejenaru, D. De Silva,*Low regularity solutions for a quadratic non-linear Schrödinger equation*, to appear in Trans. AMS**3.**I. Bejenaru, T. Tao,*Sharp well-posedness and ill-posedness results for a quadratic nonlinear Schrödinger equation*, J. Funct. Anal. vol. 233, issue 1, pp. 228-259 MR**2204680 (2007i:35216)****4.**T. Cazenave, F.B. Weissler,*The Cauchy problem for the critical nonlinear Schrödinger equation in*, Nonlinear Anal. TMA, 14 (1990), 807-836. MR**1055532 (91j:35252)****5.**H. Chihara,*Gain of regularity for semilinear Schrödinger equations*, Math. Ann. 315 (1999), no. 4, 529-567 MR**1731461 (2001b:35267)****6.**J. Colliander, J. Delort, C. Kenig, G. Staffilani,*Bilinear Estimates and Applications to NLS*, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3307-3325 MR**1828607 (2002d:35186)****7.**A. Gruenrock,*On the Cauchy- and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations*, preprint, http://xxx.lanl.gov/abs/math.AP/ 0006195**8.**C.E. Kenig, G. Ponce, L. Vega,*Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations*, Invent. Math., 134 (1998), no. 3, 89-545 MR**1660933 (99k:35166)****9.**S. Mizohata,*On the Cauchy problem*, Notes and Reports in Mathematics in Science and Engineering, Science Press & Academic Press 3 (1985), 177 pp. MR**860041 (89a:35007)****10.**T. Tao,*Global regularity of wave maps II. Small energy in two dimensions*, Comm. Math. Phys. 224 (2001), 443-544 MR**1869874 (2002h:58052)****11.**D. Tataru,*Rough solutions for the wave maps equation*, Amer. J. Math. 127 (2005), no. 2, 293-377 MR**2130618 (2006a:58034)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
35Q55

Retrieve articles in all journals with MSC (2000): 35Q55

Additional Information

**Ioan Bejenaru**

Affiliation:
Department of Mathematics, UCLA, Los Angeles, California 90095-1555

Address at time of publication:
Department of Mathematics, Texas A & M University, College Station, Texas 77843-3368

Email:
bejenaru@math.ucla.edu

DOI:
https://doi.org/10.1090/S0002-9947-08-04471-1

Received by editor(s):
October 24, 2006

Published electronically:
June 5, 2008

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.