Limit theorems for free multiplicative convolutions

Authors:
Hari Bercovici and Jiun-Chau Wang

Journal:
Trans. Amer. Math. Soc. **360** (2008), 6089-6102

MSC (2000):
Primary 46L54; Secondary 60F05

DOI:
https://doi.org/10.1090/S0002-9947-08-04507-8

Published electronically:
April 25, 2008

MathSciNet review:
2425704

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We determine the distributional behavior for products of free random variables in a general infinitesimal triangular array. The main theorems in this paper extend a result for measures supported on the positive half-line, and provide a new limit theorem for measures on the unit circle with nonzero first moment.

**[1]**S. T. Belinschi and H. Bercovici,*Atoms and regularity for measures in a partially defined free convolution semigroup*, Math. Z.**248**(2004), no. 4, 665-674. MR**2103535 (2006i:46095)****[2]**-,*Hinčin's theorem for multiplicative free convolution*, Canadian Math. Bulletin,**51**(2008), no. 1, 26-31.**[3]**H. Bercovici and V. Pata,*Stable laws and domain of attraction in free probability*, with an appendix by Ph. Biane, Ann. Math.**149**(1999), 1023-1060. MR**1709310 (2000i:46061)****[4]**-,*Limit laws for products of free and independent random variables*, Studia Math.**141**(2000), no. 1, 43-52. MR**1782911 (2001i:46105)****[5]**H. Bercovici and D. V. Voiculescu,*Lévy-Hinčin type theorems for multiplicative and additive free convolution*, Pacific J. Math.**153**(1992), no. 2, 217-248. MR**1151559 (93k:46052)****[6]**-,*Free convolution of measures with unbounded support*, Indiana Univ. Math. J.**42**(1993), no. 3, 733-773. MR**1254116 (95c:46109)****[7]**Ph. Biane,*Processes with free increments*, Math. Z.**227**(1995), no. 1, 143-174. MR**1605393 (99e:46085)****[8]**G. P. Chistyakov and F. Götze,*The arithmetic of distributions in free probability*, Arxiv: math. PS/0508245.**[9]**-,*Limit theorems in free probability. I*, Ann. Probab.**36**(2008), no. 1, 54-90. MR**2370598****[10]**D. V. Voiculescu,*Multiplication of certain noncommuting random variables*, J. Operator Theory**18**(1987), 223-235. MR**915507 (89b:46076)****[11]**-,*The analogues of entropy and of Fisher's information measure in free probability. I*, Comm. Math. Phys.**155**(1993), no. 1, 71-92. MR**1228526 (94k:46137)****[12]**-,*The coalgebra of the free difference quotient and free probability*, Int. Math. Res. Not.**2000**(2000), no. 2, 79-106. MR**1744647 (2001d:46096)****[13]**-,*Analytic subordination consequences of free Markovianity*, Indiana Univ. Math. J.**51**(2002), no. 5, 1161-1166. MR**1947871 (2003k:46100)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
46L54,
60F05

Retrieve articles in all journals with MSC (2000): 46L54, 60F05

Additional Information

**Hari Bercovici**

Affiliation:
Department of Mathematics, Indiana University, Bloomington, Indiana 47405-4301

Email:
bercovic@indiana.edu

**Jiun-Chau Wang**

Affiliation:
Department of Mathematics, Indiana University, Bloomington, Indiana 47405-4301

Email:
jiuwang@indiana.edu

DOI:
https://doi.org/10.1090/S0002-9947-08-04507-8

Received by editor(s):
December 20, 2006

Published electronically:
April 25, 2008

Additional Notes:
The first author was supported in part by a grant from the National Science Foundation.

Article copyright:
© Copyright 2008
American Mathematical Society