Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stability conditions and crepant small resolutions


Author: Yukinobu Toda
Journal: Trans. Amer. Math. Soc. 360 (2008), 6149-6178
MSC (2000): Primary 14J32, 14E30, 18E30
DOI: https://doi.org/10.1090/S0002-9947-08-04509-1
Published electronically: May 29, 2008
MathSciNet review: 2425708
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we describe the spaces of stability conditions on the triangulated categories associated to three dimensional crepant small resolutions. The resulting spaces have chamber structures such that each chamber corresponds to a birational model together with a special Fourier-Mukai transform. We observe that these spaces are covering spaces over certain open subsets of finite dimensional vector spaces and determine their deck transformations.


References [Enhancements On Off] (What's this?)

  • 1. P. Aspinwall.
    A Point's Point of View of Stringy Geometry.
    preprint, pp. 1-16, 2002.
    hep-th/0203111.
  • 2. A. Bergman.
    Stability conditions and Branes at Singularities.
    preprint.
    math.AG/0702092.
  • 3. A. Bondal and D. Orlov.
    Semiorthgonal decomposition for algebraic varieties.
    preprint, pp. 1-55, 1995.
    math.AG/9506012.
  • 4. T. Bridgeland.
    Spaces of stability conditions.
    preprint.
    math.AG/0611510.
  • 5. T. Bridgeland.
    Stability conditions on triangulated categories.
    to appear in Ann of Math.
    math.AG/0212237.
  • 6. T. Bridgeland.
    Flops and derived categories.
    Invent. Math, Vol. 147, pp. 613-632, 2002. MR 1893007 (2003h:14027)
  • 7. T. Bridgeland.
    Stability conditions on $ {K}$3 surfaces.
    preprint, pp. 1-41, 2003.
    math.AG/0307164.
  • 8. T. Bridgeland.
    Stability conditions and Kleinian singularities.
    preprint, pp. 1-13, 2005.
    math.AG/0508257.
  • 9. T. Bridgeland.
    Derived categories of coherent sheaves.
    Proceedings of the 2006 ICM, Vol. II, pp. 563-582, 2006. MR 2275610 (2007m:14018)
  • 10. T. Bridgeland.
    Stability conditions on a non-compact Calabi-Yau threefold.
    Comm. Math. Phys, Vol. 266, pp. 715-733, 2006. MR 2238896 (2007d:14075)
  • 11. J-C. Chen.
    Flops and equivalences of derived categories for three-folds with only Gorenstein singularities.
    J. Differential Geom., Vol. 61, pp. 227-261, 2002. MR 1972146 (2004d:14012)
  • 12. M. Van den Bergh.
    Three-dimensional flops and noncommutative rings.
    Duke Math. J., Vol. 122, pp. 423-455, 2004. MR 2057015 (2005e:14023)
  • 13. M. Douglas.
    D-branes, categories and $ {N}=1$ supersymmetry.
    J. Math. Phys., Vol. 42, pp. 2818-2843, 2001. MR 1840318 (2003b:81158)
  • 14. M. Douglas.
    Dirichlet branes, homological mirror symmetry, and stability.
    Proceedings of the 1998 ICM, pp. 395-408, 2002. MR 1957548 (2004c:81200)
  • 15. W. Fulton.
    Intersection theory, second edition, Vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete,3.Folge.
    Springer-Verlag, Berlin, 1998. MR 1644323 (99d:14003)
  • 16. D. Happel, I. Reiten, and S.O. Smalø.
    Tilting in abelian categories and quasitilted algebras.
    Mem. Amer. Math. Soc., Vol. 120, 1996. MR 1327209 (97j:16009)
  • 17. A. Ishii and H. Uehara.
    Autoequivalences of derived categories on the minimal resolutions of $ {A}_n$-singularities on surfaces.
    J. Differential Geom., Vol. 71, pp. 385-435, 2005. MR 2198807 (2006k:14024)
  • 18. A. Ishii, K. Ueda, and H. Uehara.
    Stability Conditions on $ {A}_n$-Singularities.
    pp. 1-44, 2006.
  • 19. Y. Kawamata.
    On the cone of divisors of Calabi-Yau fiber spaces.
    Internat. J. Math., Vol. 5, pp. 665-687, 1997. MR 1468356 (98g:14043)
  • 20. Y. Kawamata.
    $ {D}$-equivalence and $ {K}$-equivalence.
    J. Differential Geom., Vol. 61, pp. 147-171, 2002. MR 1949787 (2004m:14025)
  • 21. Y. Kawamata.
    Log crepant birational maps and derived categories.
    J. Math. Sci. Univ. Tokyo, Vol. 12, pp. 1-53, 2005. MR 2150737 (2006a:14021)
  • 22. Y. Kawamata, K. Matsuda, and K. Matsuki.
    Introduction to the Minimal Model Problem.
    Adv. Stud. Pure Math., Vol. 10, pp. 283-360, 1987. MR 946243 (89e:14015)
  • 23. Y. Kawamata and K. Matsuki.
    The number of minimal models for a 3-fold of general type is finite.
    Math. Ann., Vol. 276, pp. 595-598, 1987. MR 879538 (88f:14012)
  • 24. J. Kollár.
    Flops.
    Nagoya Math. J., Vol. 113, pp. 15-36, 1989. MR 986434 (90e:14011)
  • 25. J. Kollár and S. Mori.
    Birational geometry of algebraic varieties, Vol. 134 of Cambridge Tracts in Mathematics.
    Cambridge University Press, 1998. MR 1658959 (2000b:14018)
  • 26. E. Macri.
    Some examples of moduli spaces of stability conditions on derived categories.
    preprint.
    math.AG/0411613.
  • 27. S. Okada.
    Stability manifold of $ \mathbb{P}^1$.
    J. Algebraic Geom., Vol. 15, pp. 487-505, 2006. MR 2219846 (2007b:14036)
  • 28. M. Reid.
    Minimal models of canonical 3-folds.
    Algebraic Varieties and Analytic Varieties (S. Iitaka, ed.), Adv. Stud. Pure Math., Kinokuniya, Tokyo, and North-Holland, Amsterdam, Vol. 1, pp. 131-180. MR 715649 (86a:14010)
  • 29. R. Thomas.
    Stability conditions and the braid groups.
    Comm. Anal. Geom., Vol. 14, pp. 135-161, 2006. MR 2230573 (2007j:53113)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14J32, 14E30, 18E30

Retrieve articles in all journals with MSC (2000): 14J32, 14E30, 18E30


Additional Information

Yukinobu Toda
Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
Address at time of publication: Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, Japan
Email: toda@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-08-04509-1
Received by editor(s): October 11, 2006
Received by editor(s) in revised form: February 26, 2007, and March 12, 2007
Published electronically: May 29, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society