Fluctuation of a planar Brownian loop capturing a large area
Authors:
Alan Hammond and Yuval Peres
Journal:
Trans. Amer. Math. Soc. 360 (2008), 61976230
MSC (2000):
Primary 60J65; Secondary 60F10
Published electronically:
July 28, 2008
MathSciNet review:
2434284
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider a planar Brownian loop that is run for a time and conditioned on the event that its range encloses the unusually high area of , with being large. The conditioned process, denoted by , was proposed by Senya Shlosman as a model for the fluctuation of a phase boundary. We study the deviation of the range of from a circle of radius . This deviation is measured by the inradius and outradius , which are the maximal radius of a disk enclosed by the range of , and the minimal radius of a disk that contains this range. We prove that, in a typical realization of the conditioned measure, each of these quantities differs from by at most .
 1.
Kenneth
S. Alexander, Cuberoot boundary fluctuations for droplets in
random cluster models, Comm. Math. Phys. 224 (2001),
no. 3, 733–781. MR 1871907
(2003i:82041), http://dx.doi.org/10.1007/s22000180222
 2.
Yu.
D. Burago and V.
A. Zalgaller, Geometric inequalities, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 285, SpringerVerlag, Berlin, 1988. Translated from
the Russian by A. B. Sosinskiĭ; Springer Series in Soviet
Mathematics. MR
936419 (89b:52020)
 3.
Amir
Dembo and Ofer
Zeitouni, Large deviations and applications, Handbook of
stochastic analysis and applications, Statist. Textbooks Monogr.,
vol. 163, Dekker, New York, 2002, pp. 361–416. MR
1882715
 4.
Richard
Durrett, Probability: theory and examples, 2nd ed., Duxbury
Press, Belmont, CA, 1996. MR 1609153
(98m:60001)
 5.
Ioannis
Karatzas and Steven
E. Shreve, Brownian motion and stochastic calculus, Graduate
Texts in Mathematics, vol. 113, SpringerVerlag, New York, 1988. MR 917065
(89c:60096)
 6.
L.
A. Santaló, Integral geometry, Studies in Global
Geometry and Analysis, Math. Assoc. Amer. (distributed by PrenticeHall,
Englewood Cliffs, N.J.), 1967, pp. 147–193. MR 0215272
(35 #6114)
 7.
Hasan
B. Uzun and Kenneth
S. Alexander, Lower bounds for boundary roughness for droplets in
Bernoulli percolation, Probab. Theory Related Fields
127 (2003), no. 1, 62–88. MR 2006231
(2004f:60209), http://dx.doi.org/10.1007/s0044000302760
 8.
S.
R. S. Varadhan, Large deviations and applications, CBMSNSF
Regional Conference Series in Applied Mathematics, vol. 46, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984. MR 758258
(86h:60067b)
 9.
David
Williams, Probability with martingales, Cambridge Mathematical
Textbooks, Cambridge University Press, Cambridge, 1991. MR 1155402
(93d:60002)
 10.
G. Wulff.
Zur Frage der Geschwingkeit des Wachstums und der Auflosung der Krystallflachen. Z. Kryst., 34:449530, 1901.
 1.
 K. S. Alexander.
Cuberoot boundary fluctuations for droplets in random cluster models. Comm. Math. Phys., 224(3):733781, 2001. MR 1871907 (2003i:82041)
 2.
 Yu. D. Burago and V. A. Zalgaller.
Geometric inequalities, volume 285 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. SpringerVerlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ, Springer Series in Soviet Mathematics. MR 936419 (89b:52020)
 3.
 A. Dembo and O. Zeitouni.
Large deviations and applications. In Handbook of stochastic analysis and applications, volume 163 of Statist. Textbooks Monogr., pages 361416. Dekker, New York, 2002. MR 1882715
 4.
 R. Durrett.
Probability: theory and examples. Duxbury Press, Belmont, CA, second edition, 1996. MR 1609153 (98m:60001)
 5.
 I. Karatzas and S. E. Shreve.
Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1988. MR 917065 (89c:60096)
 6.
 L. A. Santaló.
Integral geometry. In Studies in Global Geometry and Analysis, pages 147193. Math. Assoc. Amer. (distributed by PrenticeHall, Englewood Cliffs, N.J.), 1967. MR 0215272 (35:6114)
 7.
 H. B. Uzun and K. S. Alexander.
Lower bounds for boundary roughness for droplets in Bernoulli percolation. Probab. Theory Related Fields, 127(1):6288, 2003. MR 2006231 (2004f:60209)
 8.
 S. R. S. Varadhan.
Large deviations and applications, volume 46 of CBMSNSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984. MR 758258 (86h:60067b)
 9.
 D. Williams.
Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. MR 1155402 (93d:60002)
 10.
 G. Wulff.
Zur Frage der Geschwingkeit des Wachstums und der Auflosung der Krystallflachen. Z. Kryst., 34:449530, 1901.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
60J65,
60F10
Retrieve articles in all journals
with MSC (2000):
60J65,
60F10
Additional Information
Alan Hammond
Affiliation:
Department of Mathematical Sciences, New York UniversityCourant Institute, 251 Mercer Street, New York, New York 100121185
Yuval Peres
Affiliation:
Microsoft Research, One Microsoft Way, Redmond, Washington 98052
DOI:
http://dx.doi.org/10.1090/S0002994708043663
PII:
S 00029947(08)043663
Received by editor(s):
February 3, 2006
Received by editor(s) in revised form:
June 3, 2006
Published electronically:
July 28, 2008
Additional Notes:
The research of the second author was supported in part by NSF grants #DMS0244479 and #DMS0104073
Article copyright:
© Copyright 2008
Alan Hammond and Yuval Peres
