Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Polyhedral realization of the highest weight crystals for generalized Kac-Moody algebras


Author: Dong-Uy Shin
Journal: Trans. Amer. Math. Soc. 360 (2008), 6371-6387
MSC (2000): Primary 81R50; Secondary 17B37
DOI: https://doi.org/10.1090/S0002-9947-08-04446-2
Published electronically: July 28, 2008
MathSciNet review: 2434291
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give a polyhedral realization of the highest weight crystals $ B(\lambda)$ associated with the highest weight modules $ V(\lambda)$ for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of ranks 2, 3, and Monster algebras.


References [Enhancements On Off] (What's this?)

  • 1. R. E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), 501-512. MR 943273 (89g:17004)
  • 2. R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444. MR 1172696 (94f:11030)
  • 3. G. Cliff, Crystal bases and Young tableaux, J. Algebra 202 (1998), 10-35. MR 1614241 (99k:17025)
  • 4. J. H. Conway, S. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339. MR 554399 (81j:20028)
  • 5. V. G. Drinfel'd, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl., 32 (1985), 254-258. MR 802128 (87h:58080)
  • 6. M. Jimbo, A $ q$-difference analogue of $ U(\mathfrak{g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69. MR 797001 (86k:17008)
  • 7. K. Jeong, S.-J. Kang, M. Kashiwara, Crystal bases for quantum generalized Kac-Moody algebras, Proc. London Math. Soc. 90 (2005), 395-438. MR 2142133 (2006e:17020)
  • 8. K. Jeong, S.-J. Kang, M. Kashiwara, D.-U. Shin, Abstract crystals for quantum generalized Kac-Moody algebras, Int. Math. Res. Not. IMRN 2007, Art. ID mm001, 19 pp. MR 2331899
  • 9. S.-J. Kang, Quantum deformations of generalized Kac-Moody algebras and their modules, J. Algebra 175 (1995), 1041-1066. MR 1341758 (96k:17023)
  • 10. S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, Proc. London Math. Soc. 86 (2003), 29-69. MR 1971463 (2004c:17028)
  • 11. S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Affine crystals and vertex models, Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449-484. MR 1187560 (94a:17008)
  • 12. M. Kashiwara, Crystalizing the $ q$-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), 249-260. MR 1090425 (92b:17018)
  • 13. M. Kashiwara, On crystal bases of the $ q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516. MR 1115118 (93b:17045)
  • 14. M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), 839-858. MR 1240605 (95b:17019)
  • 15. M. Kashiwara, T. Nakashima, Crystal graphs for representations of the $ q$-analogue of classical Lie algebras, J. Algebra 165 (1994), 295-345. MR 1273277 (95c:17025)
  • 16. P. Littelmann, Paths and root operators in representation theory, Ann. of Math. 142 (1995), 499-525. MR 1356780 (96m:17011)
  • 17. T. Nakashima, Polyhedral realizations of crystal bases for integrable highest weight modules, J. Algebra 219 (1999), 571-597 MR 1706829 (2000g:17020)
  • 18. T. Nakashima, A. Zelevinsky, Polyhedral realizations of crystal bases for quantized Kac-Moody algebras, Adv. Math. 131 (1997), 253-278 MR 1475048 (98m:17023)
  • 19. D.-U. Shin, Polyhedral realization of crystal bases for generalized Kac-Moody algebras, J. London Math. Soc. (2) 77 (2008), 273-286.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 81R50, 17B37

Retrieve articles in all journals with MSC (2000): 81R50, 17B37


Additional Information

Dong-Uy Shin
Affiliation: Department of Mathematics Education, Hanyang University, Seoul 133-791, Korea
Email: dushin@hanyang.ac.kr

DOI: https://doi.org/10.1090/S0002-9947-08-04446-2
Keywords: Highest weight crystals, generalized Kac-Moody algebras, Monster algebras
Received by editor(s): December 11, 2005
Received by editor(s) in revised form: November 8, 2006
Published electronically: July 28, 2008
Additional Notes: This research was supported by the research fund of Hanyang University (HY-2007-000-0000-5889).
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society