A probabilistic approach to bounded/positive solutions for Schrödinger operators with certain classes of potentials

Author:
Ross G. Pinsky

Journal:
Trans. Amer. Math. Soc. **360** (2008), 6545-6554

MSC (2000):
Primary 60H30, 35J10

DOI:
https://doi.org/10.1090/S0002-9947-08-04473-5

Published electronically:
June 26, 2008

MathSciNet review:
2434298

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the equation

for . For certain classes of potentials , we use probabilistic tools to study the bounded solutions and the positive solutions for (*). A primary motivation is to offer probabilistic intuition for the results.

**1.**Arendt, W., Batty, C. J. K. and Bénilan, P.*Asymptotic stability of Schrödinger semigroups on*, Math. Z.**209**(1992), 511-518. MR**1156433 (93i:47057)****2.**Batty, C. J. K.*Asymptotic stability of Schrödinger semigroups: path integral methods*, Math. Ann.**292**(1992), 457-492. MR**1152946 (93g:47050)****3.**Ben Ari, I. and Pinsky, R.*Absolute continuity/singularity and relative entropy properties for probability measures induced by diffusions on infinite time intervals*, Stochastic Process. Appl.**115**(2005), 179-206. MR**2111192 (2005j:60145)****4.**Brezis, H., Chipot, M. and Xie, Y.*preprint*.**5.**Carroll, T. and Ortega-Cerda, J.*Configurations of balls in Euclidean space that Brownian motion cannot avoid*, Ann. Acad. Sci. Fenn. Math., to appear. MR**2297888****6.**Grigor'yan, A.*Bounded solutions of the Schrödinger equation on noncompact Riemannian manifolds*, J. Soviet Math.**51**(1990), 2340-2349. MR**1001354 (90m:35050)****7.**Grigor'yan, A. and Hansen, W.*A Liouville property for Schrödinger operators*, Math. Ann.**312**(1998), 659-716. MR**1660247 (2000a:58092)****8.**Hess-Green, R. in preparation.**9.**John, F.*Partial Differential Equations*, third edition, Springer-Verlag (1978). MR**514404 (80f:35001)****10.**Murata, M.*Structure of positive solutions to in*, Duke Math. J.**53**(1986), 869-943. MR**874676 (88f:35039)****11.**Pinchover, Y.*On the equivalence of Green functions of second order elliptic equations in*, Differential Integral Equations**5**(1992), 481-493. MR**1157482 (93b:35035)****12.**Pinchover, Y.*Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations*, Math. Ann.**314**(1999), 555-590. MR**1704549 (2001c:35044)****13.**Pinsky, R. G.*Positive Harmonic Functions and Diffusion*, Cambridge University Press (1995). MR**1326606 (96m:60179)****14.**Simon, B.*Schrödinger semigroups*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), 447-526. MR**670130 (86b:81001a)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
60H30,
35J10

Retrieve articles in all journals with MSC (2000): 60H30, 35J10

Additional Information

**Ross G. Pinsky**

Affiliation:
Department of Mathematics, Technion—Israel Institute of Technology, Haifa, 32000, Israel

Email:
pinsky@math.technion.ac.il

DOI:
https://doi.org/10.1090/S0002-9947-08-04473-5

Keywords:
Liouville theorem,
bounded solutions,
positive solutions,
Schr\"odinger equation

Received by editor(s):
June 26, 2006

Received by editor(s) in revised form:
January 16, 2007

Published electronically:
June 26, 2008

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.