Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Strong variational and jump inequalities in harmonic analysis


Authors: Roger L. Jones, Andreas Seeger and James Wright
Journal: Trans. Amer. Math. Soc. 360 (2008), 6711-6742
MSC (2000): Primary 42B15
DOI: https://doi.org/10.1090/S0002-9947-08-04538-8
Published electronically: July 24, 2008
MathSciNet review: 2434308
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove variational and jump inequalities for a large class of linear operators arising in harmonic analysis.


References [Enhancements On Off] (What's this?)

  • 1. M. Akcoglu, R.L. Jones and P. Schwartz, Variation in probability, ergodic theory and analysis, Illinois J. Math., 42 (1998), 154-177. MR 1492045 (99a:60048)
  • 2. J. Bergh and J. Peetre, On the spaces $ V_p, 0<p<\infty$, Bollettino U.M.I., 10 (1974), 632-648. MR 0380389 (52:1289)
  • 3. J. Bourgain, Estimations de certaines fonctions maximales, C.R. Acad. Sci. Paris, 301 (1985), 499-502. MR 812567 (87b:42023)
  • 4. -, Averages in the plane over convex curves and maximal operators, J. Analyse Math., 47 (1986), 69-85. MR 874045 (88f:42036)
  • 5. -, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5-45. MR 1019960 (90k:28030)
  • 6. D.L. Burkholder, B. Davis and R. Gundy, Integral inequalities for convex functions of operators on martingales, Proc. Sixth Berkeley Symp. Math. Statist. Prob., 2 (1972), 223-240. MR 0400380 (53:4214)
  • 7. A.P. Calderón, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. USA, 59 (1968), 349-353. MR 0227354 (37:2939)
  • 8. A.P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309. MR 0084633 (18:894a)
  • 9. J. Campbell, R.L. Jones, K. Reinhold and M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J., 105 (2000), 59-83. MR 1788042 (2001h:42021)
  • 10. -, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 35 (2003), 2115-2137. MR 1953540 (2003j:44007)
  • 11. A. Carbery, The boundedness of the maximal Bochner-Riesz operator on $ L^4({\mathbb{R}}^2)$, Duke Math. J., 50 (1983), 409-416. MR 705033 (84m:42025)
  • 12. -, Radial Fourier multipliers and associated maximal functions, Recent progress in Fourier analysis, ed. by I. Peral and J.L. Rubio de Francia, North Holland, 1985. MR 848141 (87i:42029)
  • 13. -, Variants of the Calderón-Zygmund theory for $ L\sp p$-spaces, Rev. Mat. Iberoamericana 2 (1986), no. 4, 381-396. MR 913694 (89f:42011)
  • 14. A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular integral operators along variable lines, J. Geom. Anal. 9 (1999), 583-605. MR 1757580 (2001g:42026)
  • 15. M. Christ, On the almost everywhere convergence of Bochner-Riesz means in higher dimensions, Proc. Amer. Math. Soc., 95 (1985), 16-20. MR 796439 (87c:42020)
  • 16. -, A $ T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61 (1990), 601-628. MR 1096400 (92k:42020)
  • 17. -, Weak type $ (1,1)$ bounds for rough operators, Ann. of Math., 128 (1988), 19-42. MR 951506 (89m:42013)
  • 18. M. Christ and J.L. Rubio de Francia, Weak type $ (1,1)$ bounds for rough operators. II. Invent. Math. 93 (1988), no. 1, 225-237. MR 943929 (90d:42021)
  • 19. H. Dappa and W. Trebels, On maximal functions generated by Fourier multipliers, Ark. Mat., 23 (1985), 241-259. MR 827345 (87h:42025)
  • 20. G. David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoamericana, 4 (1988), 73-114. MR 1009120 (90h:42026)
  • 21. J. Duoandikoetxea and J.-L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math., 84 (1986), 541-561. MR 837527 (87f:42046)
  • 22. J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related topics, North Holland, 1985. MR 807149 (87d:42023)
  • 23. L. Grafakos and N. Kalton, The Marcinkiewicz multiplier condition for bilinear operators, Studia Math. 146 (2001), 151-180. MR 1853518 (2002f:42007)
  • 24. S. Hofmann, Weak $ (1,1)$ boundedness of singular integrals with nonsmooth kernel, Proc. Amer. Math. Soc. 103 (1988), 260-264. MR 938680 (89f:42013)
  • 25. R.L. Jones, Ergodic averages on spheres, J. Anal. Math. 61 (1993), 29-45. MR 1253437 (95g:28031)
  • 26. R.L. Jones, R. Kaufman, J. Rosenblatt, and M. Wierdl, Oscillation in ergodic theory, Erg. Th. & Dyn. Sys., 18 (1998), 889-936. MR 1645330 (2000b:28019)
  • 27. R.L. Jones, J. Rosenblatt, and M. Wierdl, Oscillation inequalities for rectangles, Proc. Amer. Math. Soc., 129 (2000), 1349-1358. MR 1814160 (2001m:42039)
  • 28. -, Oscillation in ergodic theory: higher dimensional results, Israel Journal of Math., 135 (2003), 1-27. MR 1996394 (2004h:37005)
  • 29. R.L. Jones and G. Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc., 356 (2004), 4493-4518. MR 2067131 (2005c:42005)
  • 30. M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, Tohoku Math. J. (2) 37 (1985), 343-365. MR 799527 (86m:42028)
  • 31. M. Lacey, Ergodic averages on circles, J. Anal. Math. 67 (1995), 199-206. MR 1383493 (97f:28045)
  • 32. D. Lépingle, La variation d'order p des semi-martingales, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 36 (1976), 295-316. MR 0420837 (54:8849)
  • 33. G. Mockenhaupt, A. Seeger and C.D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal function, Ann. of Math., 136 (1992), 207-218. MR 1173929 (93i:42009)
  • 34. -, Local smoothing of Fourier integral operators and Carleson-Sjölin estimates, J. Amer. Math. Soc., 6 (1993), 65-130. MR 1168960 (93h:58150)
  • 35. A. Nagel, N. Riviere and S. Wainger, A maximal function associated to the curve $ (t,t^2)$, Proc. Nat. Acad. Sci. USA, 73 (1976), 1416-1417. MR 0399389 (53:3233)
  • 36. G. Pisier and Q. Xu, The strong p-variation of martingales and orthogonal series, Prob. Theory, 77 (1988), 497-451. MR 933985 (89d:60086)
  • 37. J. Qian, The p-variation of partial sum processes and the empirical process, Ann. of Prob., 26 (1998), 1370-1383. MR 1640349 (99i:60052)
  • 38. G.C. Rota, An ``Alternierende Verfahren'' for general positive operators, Bull. Amer. Math. Soc., 68 (1962), 95-102. MR 0133847 (24:A3671)
  • 39. J.L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J., 53 (1986), 395-404. MR 850542 (87j:42046)
  • 40. A. Seeger, On quasiradial Fourier multipliers and their maximal functions, J. reine angew. Math., 370 (1986), 61-73. MR 852510 (87k:42020)
  • 41. -, Some inequalities for singular convolution operators in $ L\sp p$-spaces, Trans. Amer. Math. Soc. 308 (1988), no. 1, 259-272. MR 955772 (89j:42015)
  • 42. -, Singular integral operators with rough convolution kernels, J. Amer. Math. Soc. 9 (1996), 95-105. MR 1317232 (96f:42021)
  • 43. A. Seeger, T. Tao and J. Wright, Endpoint mapping properties for spherical maximal operators, J. Inst. Math. Jussieu 2 (2003), 109-144. MR 1955209 (2003k:42038)
  • 44. -, Singular maximal functions and Radon transforms near $ L^1$, Amer. J. Math., 126 (2004), 607-647. MR 2058385 (2005i:44003)
  • 45. A. Seeger, S. Wainger and J. Wright, Pointwise convergence of spherical means, Math. Proc. Cambridge Phil. Soc. 118 (1995), 115-124. MR 1329463 (96b:42013)
  • 46. E.M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton University Press, Princeton, N.J., 1970. MR 0252961 (40:6176)
  • 47. -, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1971. MR 0290095 (44:7280)
  • 48. -, Maximal functions: Spherical means, Proc. Nat. Acad. Sci. USA, 73 (1976), 2174-2175. MR 0420116 (54:8133a)
  • 49. -, Harmonic Analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton, N.J., 1993. MR 1232192 (95c:42002)
  • 50. E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84 (1978), 1239-1295. MR 508453 (80k:42023)
  • 51. E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • 52. T. Tao, The weak-type $ (1,1)$ of $ L\log L$ homogeneous convolution operator, Indiana Univ. Math. J. 48 (1999), 1547-1584. MR 1757083 (2001f:42029)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42B15

Retrieve articles in all journals with MSC (2000): 42B15


Additional Information

Roger L. Jones
Affiliation: Department of Mathematics, DePaul University, Chicago, Illinois 60614
Address at time of publication: Conserve School, 5400 N. Black Oak Lake Road, Land O’Lakes, Wisconsin 54540

Andreas Seeger
Affiliation: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin 53706
Email: seeger@math.wisc.edu

James Wright
Affiliation: School of Mathematics, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland
Email: wright@maths.ed.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-08-04538-8
Received by editor(s): July 26, 2004
Received by editor(s) in revised form: April 23, 2007
Published electronically: July 24, 2008
Additional Notes: The second author was supported in part by NSF grant DMS 0200186
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society