THE ZERO SET OF SEMI-INVARIANTS
FOR EXTENDED DYNKIN QUIVERS

CH. RIEDTMANN AND G. ZWARA

Abstract. We show that the set of common zeros \(Z_{Q,d} \) of all semi-invariants vanishing at 0 on the variety \(\text{rep}(Q,d) \) of all representations with dimension vector \(d \) of an extended Dynkin quiver \(Q \) under the group \(\text{GL}(d) \) is complete intersection if \(d \) is “big enough”. In case \(\text{rep}(Q,d) \) does not contain an open \(\text{GL}(d) \)-orbit, which is the case not considered so far, the number of irreducible components of \(Z_{Q,d} \) grows with \(d \), except if \(Q \) is an oriented cycle.

1. Introduction and main result

1.1. Let \(k \) be an algebraically closed field, and let \(Q = (Q_0, Q_1, t, h) \) be a quiver with \(n \) vertices and a finite set \(Q_1 \) of arrows \(\alpha : t\alpha \to h\alpha \), where \(t\alpha \) and \(h\alpha \) denote the tail and the head of \(\alpha \), respectively.

A representation of \(Q \) over \(k \) is a collection \((X(i); i \in Q_0) \) of finite dimensional \(k \)-vector spaces together with a collection \((X(\alpha) : X(t\alpha) \to X(h\alpha); \alpha \in Q_1) \) of \(k \)-linear maps. A morphism \(f : X \to Y \) between two representations is a collection \((f(i) : X(i) \to Y(i)) \) of \(k \)-linear maps such that

\[
 f(h\alpha) \circ X(\alpha) = Y(\alpha) \circ f(t\alpha) \quad \text{for all } \alpha \in Q_1.
\]

By \(\sigma(X) \) we denote the number of pairwise non-isomorphic indecomposable direct summands occurring in a decomposition of \(X \) into indecomposables. According to the theorem of Krull-Schmidt, \(\sigma(X) \) is well-defined. The dimension vector of a representation \(X \) of \(Q \) is the vector

\[
 \dim X = (\dim X(i))_{i \in Q_0} \in \mathbb{N}^{Q_0}.
\]

We denote the category of representations of \(Q \) by \(\text{rep}(Q) \), and for any vector \(d = (d_i)_{i \in Q_0} \in \mathbb{N}^{Q_0} \),

\[
 \text{rep}(Q,d) = \prod_{\alpha \in Q_1} \text{Mat}(d_{h\alpha} \times d_{t\alpha}, k)
\]

is the vector space of representations \(X \) of \(Q \) with \(X(i) = k^{d_i}, i \in Q_0 \). The group

\[
 \text{GL}(d) = \prod_{i \in Q_0} \text{GL}(d_i, k)
\]

Received by the editors October 12, 2006.

2000 Mathematics Subject Classification. Primary 14L24; Secondary 16G20.

Key words and phrases. Semi-invariants, quivers, representations.

The second author gratefully acknowledges support from the Polish Scientific Grant KBN No. 1 P03A 018 27 and the Swiss Science Foundation.
acts on $\text{rep}(Q, d)$ by
\[(g_i)_{i \in Q_0} \ast X)(\alpha) = g_{\alpha} \circ X(\alpha) \circ g_{\alpha}^{-1}.
\]
Note that the $GL(d)$-orbit of X consists of the representations Y in $\text{rep}(Q, d)$ which are isomorphic to X.

A regular function $f \in k[\text{rep}(Q, d)]$ is called a semi-invariant if, for any $g \in GL(d)$, $g \ast f = \chi(g)f$ for some group homomorphism $\chi : GL(d) \to k^*$ which is a regular function on $GL(d)$, the so-called weight of f. Note that the k-algebra generated by all semi-invariants is just the algebra $k[\text{rep}(Q, d)]^{SL(d)}$ of polynomial functions which are invariant under the product
\[SL(d) = \prod_{i \in Q_0} SL(d_i, k).
\]
Indeed, the algebra $k[\text{rep}(Q, d)]^{SL(d)}$ is the direct sum of the spaces of $GL(d)$-semi-invariants of weight χ, where χ ranges over all characters of $GL(d)$.

In case d is a sincere prehomogeneous dimension vector, i.e. if $d_i > 0$ for all i and if the orbit $GL(d) \cdot T$ of some representation T is open and dense, the algebra $k[\text{rep}(Q, d)]^{SL(d)}$ is a polynomial algebra in $n - \sigma(T)$ generators. In fact, the generators correspond bijectively to the simple objects in the perpendicular category T^\perp, the full subcategory of $\text{rep}(Q)$ whose objects Y satisfy $\text{Hom}_Q(T, Y) = \text{Ext}_Q^1(T, Y) = 0$ [12]. We showed in [8] that the variety of common zeros $Z_{Q, d}$ of all non-constant semi-invariants is a complete intersection if each of the pairwise non-isomorphic indecomposable direct summands T_i of $T = \bigoplus_{i=1}^{\sigma(T)} T_i^{\lambda_i}$

arises with a sufficiently large multiplicity λ_i. Choosing λ_i larger still, we obtain that $Z_{Q, d}$ is irreducible. By [9], $Z_{Q, d}$ is a complete intersection or irreducible, for $\lambda_i \geq 3$ or $\lambda_i \geq 4$, respectively, if Q is a tame quiver, i.e. a disjoint union of Dynkin quivers and extended Dynkin quivers. Chang and Weyman, the first to consider this question, showed in [2] that $Z_{Q, d}$ is a complete intersection for any d if Q is a Dynkin quiver of type A_n.

The interest in knowing when $k[\text{rep}(Q, d)]^{SL(d)}$ is non-singular (or equivalently is a polynomial ring), and when $Z_{Q, d}$ is a complete intersection comes from the following fact: Assume a reductive algebraic group G acts regularly and linearly on a finite dimensional C-vector space V. The action of G on V is called

(i) coregular if the algebraic quotient $[5] V//G$ has no singularities,
(ii) cofree if $C[V]$ is a free module over the invariant ring $C[V]^G$,
(iii) equidimensional if the dimension of $V//G$ equals the codimension in V of the set of common zeros of all G-invariants which vanish at 0.

G. Schwarz proved in [16] that an action is cofree if and only if it is coregular and equidimensional. He classified all coregular and cofree representations of connected simple algebraic groups ([13], [15]). In [7], P. Littelmann classified all coregular and cofree irreducible representations of semisimple groups.

We have recalled above that in case d is a prehomogeneous dimension vector the action of $SL(d)$ on $\text{rep}(Q, d)$ is always coregular, and it is equidimensional if d is “big enough”.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Unfortunately, most dimension vectors fail to be prehomogeneous, except for Dynkin quivers, in which case they all are. The algebra \(k[\text{rep}(Q, d)]^{\text{SL}(d)} \) for an arbitrary pair \((Q, d)\) is not known. If \(Q \) is an extended Dynkin quiver, however, Skowroński and Weyman have obtained in [17] a complete description of \(k[\text{rep}(Q, d)]^{\text{SL}(d)} \) by generators and relations for an arbitrary dimension vector \(d \). It turns out that in most cases the action of \(\text{SL}(d) \) on \(\text{rep}(Q, d) \) is coregular (compare 1.3).

Our purpose in the present paper is to study \(Z_{Q,d} \) for an extended Dynkin quiver and an arbitrary dimension vector. We find that, as in the prehomogeneous case, the action of \(\text{SL}(d) \) on \(\text{rep}(Q, d) \) is equidimensional if \(d \) is “big enough”. But \(Z_{Q,d} \) does not become irreducible with growing \(d \). In fact, except for the oriented cycle, the number of its irreducible components increases with \(d \).

1.2. From now on until the end of Section 4 we assume that \(Q \) does not contain oriented cycles. We will usually not repeat this assumption. We will treat the oriented cycle separately in Section 5.

We need to recall a few facts and definitions, mostly from [11], before we can state our results. For a quiver \(Q \), the Euler bilinear form \((-,-) : \mathbb{Z}^{Q_0} \times \mathbb{Z}^{Q_0} \to \mathbb{Z}\) is defined by \((x,y) = \sum_{i \in Q_0} x_iiy_i - \sum_{a \in Q_1} x_{a^-}yh_{a^+} \). The associated quadratic form \(q_Q : \mathbb{Z}^{Q_0} \to \mathbb{Z} \), given by \(q_Q(x) = \langle x, x \rangle \), is the Euler quadratic form. If \(X \) and \(Y \) are representations of \(Q \) and \(d \) is a dimension vector, we have

\[
\langle \text{dim} X, \text{dim} Y \rangle = [X,Y] - [1]X,Y,
\]

where we set \([X,Y] = \dim_k \text{Hom}_Q(X,Y)\) and \([1]X,Y] = \dim_k \text{Ext}^1_Q(X,Y)\).

Assume that \(Q \) is an extended Dynkin quiver. Then the Euler quadratic form is positive semi-definite, and its radical is \(\mathbb{Z}h \) for a unique vector \(h \in \mathbb{N}^{Q_0} \). The defect is the linear form \(\partial : \mathbb{Z}^{Q_0} \to \mathbb{Z} \) given by \(\partial(x) = \langle h, x \rangle = -\langle x, h \rangle \). A representation \(X \) is called preprojective, regular, or preinjective, if \(\partial(\text{dim} U) < 0 \), \(= 0 \), or \(> 0 \), respectively, for every indecomposable direct summand \(U \) of \(X \). Any representation \(X \) has a unique decomposition \(X = X_P \oplus X_R \oplus X_T \), where \(X_P \), \(X_R \), \(X_T \) are preprojective, regular, and preinjective, respectively.

The regular representations form an exact abelian subcategory \(R \) of \(\text{rep}(Q) \). The category \(R \) decomposes into a \(\mathbb{P}^1(k) \)-family \(\bigsqcup_{\mu \in \mathbb{P}^1(k)} R_{\mu} \) of uniserial categories. For each \(\mu \), the category \(R_{\mu} \) contains a finite number \(r_{\mu} \) of simple objects; their dimension vectors add up to \(h \). The set \(\mathcal{E} = \{ \mu \in \mathbb{P}^1(k) : r_{\mu} > 1 \} \) has at most three elements. For \(\mu \not\in \mathcal{E} \), we denote the unique simple representations of \(R_{\mu} \) by \(H_{\mu} \). A simple regular representation with dimension vector \(h \) is called homogeneous. We have \(\sum (r_{\mu} - 1) = \#Q_0 - 2 = n - 2 \).

If \(d \) is not a prehomogeneous dimension vector, then representations in \(\text{rep}(Q,d) \) are necessarily generically regular. In fact, \(\text{rep}(Q,d) \) contains an open subset consisting of representations \(H_{\mu_1} \oplus \cdots \oplus H_{\mu_p} \oplus V \), where \(p \geq 1 \) and \(\mu_1, \ldots, \mu_p \not\in \mathcal{E} \) are pairwise different, any indecomposable direct summand of \(V \) belongs to \(R_{\mu} \) for some \(\mu \in \mathcal{E} \), and \(\text{dim} V = e \) is prehomogeneous. We call the decomposition \(d = p \cdot h + e \) the canonical decomposition of \(d \).

1.3. We are now ready to state our results.

As a consequence of the theorem of Skowroński and Weyman [17 Thm.21], we know that the algebra \(k[\text{rep}(Q, d)]^{\text{SL}(d)} \) is a polynomial ring if \(Q \) is an extended Dynkin quiver, \(d = p \cdot h + e \) is not prehomogeneous and \(p \geq 2 \). If \(Q \) is of type
Theorem 1. Let \(Z \in Q, N \) be an extended Dynkin quiver different from the oriented cycle, \(d \in \mathbb{N}^{Q_0} \) a non-prehomogeneous dimension vector with canonical decomposition \(d = p \cdot h + e \), and \(V = \bigoplus_{i=1}^{n(V)} V_i^{\lambda_i} \) a representation in the open orbit of \(\text{rep}(Q,e) \) with \(V_i \) indecomposable and pairwise non-isomorphic. Assume that either \(Q \) is of type \(\tilde{A}_{n-1} \) or else \(p \geq 3 \) and \(\lambda_i \geq 3 \) for all \(i \). Then we have:

(i) The action of \(\text{SL}(d) \) on \(\text{rep}(Q,d) \) is equidimensional.

(ii) Each irreducible component of \(Z_{Q,d} \) is the closure of a \(\text{GL}(d) \)-orbit.

(iii) The number of irreducible components of \(Z_{Q,d} \) is at least \(p - 2 \).

Remark 1.1. Note that the behavior of the number of irreducible components of \(Z_{Q,d} \) is quite different from what happens for \(d \) prehomogeneous, since in that case \(Z_{Q,N,d} \) is irreducible for \(N \) large.

Remark 1.2. If \(Q \) is of type \(\tilde{D}_{n-1} \), it can be shown that the assumption on \(\lambda_i \) may be dropped if \(p \geq 4 \). We do not know if such a tradeoff is possible if \(Q \) is of type \(\tilde{E}_6, \tilde{E}_7, \) or \(\tilde{E}_8 \).

Remark 1.3. Our arguments do not extend to the case \(d = 2 \cdot h \). Indeed, for

\[
Q = \begin{array}{c}
\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
\uparrow & \downarrow & \downarrow & \downarrow \\
5 & 1 & 1 & 1 \\
\end{array}
\end{array}
, \quad h = \begin{array}{cccc}
1 & 1 & 1 & 2
\end{array}
\]

the algebra \(k[\text{rep}(Q,d)]^{{\text{SL}(d)}} \) is a polynomial ring in 6 variables by [17, Thm. 17], but \(Z_{Q,d} \) contains the representation \(X = X_1 \oplus X_2 \), where \(X_1 \) is the one-dimensional representation supported at the vertex 5 and the orbit of the representation \(X_2 \) is open in \(\text{rep}(Q,2 \cdot h - \text{dim} X_1) \), and

\[
\text{codim GL}(2 \cdot h) \ast X = 1[X,X] = 1[X_2,X_1] = 5.
\]

The paper is organized as follows: In Section 2 we generalize Schofield’s result relating semi-invariants to objects in some perpendicular category [12] to non-prehomogeneous dimension vectors. In Section 3 we describe these generalized perpendicular categories, and we prove our main result in Section 4. The last section is devoted to the oriented cycle. As in that case there exist non-constant \(\text{GL}(d) \)-invariants on \(\text{rep}(Q,d) \), and we need to modify the description of \(Z_{Q,d} \) slightly. We obtain the following corollary.

Corollary 1.4. If \(Q \) is an \(\tilde{A}_{n-1} \)-quiver, then \(Z_{Q,d} \) is a complete intersection for any dimension vector \(d \).
2. Semi-invariants and perpendicular categories

2.1. Let Q be a quiver, $d, e \in \mathbb{N}^{Q_0}$, and let X, Y be representations of Q with $\dim X = d$ and $\dim Y = e$. Consider the linear map

$$\mathcal{F}_{X,Y} : \bigoplus_{i \in Q_i} \text{Hom}_k(k^{d_i}, k^{e_i}) \to \bigoplus_{\alpha \in Q_1} \text{Hom}_k(k^{d_{\alpha}}, k^{e_{\alpha}})$$

which sends $(g; i \in Q_0)$ to $(h_\alpha; \alpha \in Q_1)$ with $h_\alpha = g_{h_\alpha} \circ X(\alpha) - Y(\alpha) \circ g_{\alpha}$. Note that $\text{Ker} \mathcal{F}_{X,Y} = \text{Hom}_Q(X, Y)$ and $\text{Coker} \mathcal{F}_{X,Y} = \text{Ext}^1_Q(X, Y)$, which implies that

$$\langle d, e \rangle = [X, Y] - 1 \langle X, Y \rangle.$$

If we assume that $\langle d, e \rangle = 0$, the linear map $\mathcal{F}_{X,Y}$ will be represented by a square matrix $H_{X,Y}$ (with respect to some bases), and the determinant $\det H_{X,Y}$ is a $\text{GL}(d) \times \text{GL}(e)$-semi-invariant on $\text{rep}(Q, d) \times \text{rep}(Q, e)$ by [12]. We denote by $f_Y \in k[\text{rep}(Q, d)]$ the semi-invariant associated to a representation Y. Note that, for a short exact sequence

$$0 \to Y' \to Y \to Y'' \to 0$$

with $\langle d, \dim Y' \rangle = \langle d, \dim Y \rangle = \langle d, \dim Y'' \rangle = 0$, we have that f_Y is a non-zero multiple of $f_{Y'} \cdot f_{Y''}$ [3].

The semi-invariant f_Y does not vanish identically on $\text{rep}(Q, d)$ if and only if there exists some $T \in \text{rep}(Q, d)$ with $[T, Y] = [1T, Y] = 0$. We define the perpendicular category d^\perp to be the full subcategory of $\text{rep}(Q)$ whose objects are the representations Y of Q for which there is a $T \in \text{rep}(Q, d)$ with $[T, Y] = [1T, Y] = 0$. Note that in this case $[X, Y] = [1X, Y] = 0$ for X in some dense open subset of $\text{rep}(Q, d)$, as $[-, Y] = 0$ and $[1-, Y] = 0$ are open conditions. In case d is prehomogeneous, d^\perp is just the category T^\perp introduced by Schofield in [12], where $T \in \text{rep}(Q, d)$ lies in the open orbit.

The following result from [3], which in characteristic zero also follows from [13], relates d^\perp to semi-invariants.

Proposition 2.1. If Q does not contain oriented cycles and $d \in \mathbb{N}^{Q_0}$, the functions $f_Y, Y \in d^\perp$, span the space $k[\text{rep}(Q, d)]^{\text{SL}(d)}$.

2.2. We start with the following lemma.

Lemma 2.2. d^\perp is an exact abelian subcategory of $\text{rep}(Q)$.

Proof. Clearly d^\perp is closed under taking direct summands. Let Y' and Y'' belong to d^\perp. Then there is a $T \in \text{rep}(Q, d)$ for which

$$[T, Y'] = [1T, Y'] = [T, Y''] = [1T, Y''] = 0.$$

Let $f : Y' \to Y''$ be a homomorphism. Then we get two induced long exact sequences

$$0 \to \text{Hom}_Q(T, \text{Ker}(f)) \to \text{Hom}_Q(T, Y') \to \text{Hom}_Q(T, \text{Im}(f)) \to$$

$$\to \text{Ext}^1_Q(T, \text{Ker}(f)) \to \text{Ext}^1_Q(T, Y') \to \text{Ext}^1_Q(T, \text{Im}(f)) \to 0,$$

$$0 \to \text{Hom}_Q(T, \text{Im}(f)) \to \text{Hom}_Q(T, Y'') \to \text{Hom}_Q(T, \text{Coker}(f)) \to$$

$$\to \text{Ext}^1_Q(T, \text{Im}(f)) \to \text{Ext}^1_Q(T, Y'') \to \text{Ext}^1_Q(T, \text{Coker}(f)) \to 0.$$
This implies that
\[[T, \text{Ker}(f)] = [T, \text{Im}(f)] = 1[T, \text{Ker}(f)] = 1[T, \text{Im}(f)] \]
\[= [T, \text{Coker}(f)] = 1[T, \text{Coker}(f)] = 0. \]

Hence the subcategory \(d^\perp \) is closed under kernels, images and cokernels. If \(Y \) is an extension
\[0 \rightarrow Y' \rightarrow Y \rightarrow Y'' \rightarrow 0 \]
of \(Y'' \) by \(Y' \), considering the long exact sequence obtained from mapping \(T \) to this short exact sequence yields \(Y \in d^\perp \). □

If \(d \) is prehomogeneous, \(d^\perp \) is equivalent to the category of representations of some quiver by [12]. For arbitrary \(d \), \(d^\perp \) may have infinitely many simple objects, however. We will compute \(d^\perp \) in case \(Q \) is an extended Dynkin quiver and \(d \) is not prehomogeneous in Section 3.

2.3. For further reference, we collect a few properties of \(d^\perp \).

Proposition 2.3. Let \(d = d' + d'' \) with \(d, d', d'' \in \mathbb{N}^Q \), and suppose that generically a representation \(T \in \text{rep}(Q,d) \) has a subrepresentation \(T' \in \text{rep}(Q,d') \). Then
\[d^\perp \cap (d'^\perp) = (d'^\perp) \cap (d'\perp) = (d''\perp) \cap d^\perp. \]

Proof. We only prove the first equality. Suppose \(Y \in (d'^\perp) \cap (d'\perp) \), and choose \(T' \in \text{rep}(Q,d') \) with \([T', Y] = 1[T', Y] = 0 \) and \(T'' \in \text{rep}(Q,d'') \) with \([T'', Y] = 1[T'', Y] = 0 \). Then obviously \([T' \oplus T'', Y] = 1[T' \oplus T'', Y] = 0 \), which implies \(Y \in d^\perp \). Conversely, if \(Y \in d^\perp \cap (d')\perp \), choose \(T \in \text{rep}(Q,d) \) with \([T, Y] = 1[T, Y] = 0 \) and having a subrepresentation \(T' \subseteq T \) with \(\text{dim} T' = d' \). Note that \(1[T, Y] = 0 \) implies \(1[T', Y] = 0 \) as the map \(\text{Ext}^1_Q(T, Y) \rightarrow \text{Ext}^1_Q(T', Y) \) is surjective. But as \(Y \in (d')\perp \) we have
\[\langle d', \text{dim} Y \rangle = [T', Y] = 1[T', Y] = 0 \]
and thus \([T', Y] = 0 \). Applying the functor \(\text{Hom}_Q(\cdot, Y) \) we find \([T/T', Y] = 1[T/T', Y] = 0 \) and thus \(Y \in (d')\perp \cap (d'\perp) \). □

Corollary 2.4. Let \(z \) be a sink of \(Q \), and denote by \(\varepsilon_z \in \mathbb{N}^Q \) the vector given by \(\varepsilon_z(y) = \delta_{z,y} \). For \(d \in \mathbb{N}^Q \), set \(\overline{d} = d - d_z \cdot \varepsilon_z \). Then
\[\{ Y \in d^\perp ; Y(z) = 0 \} = \{ Y \in (\overline{d})^\perp ; Y(z) = 0 \}. \]

Proof. We may assume that \(d_z > 0 \). Apply Proposition 2.3 for \(d' = d_z \cdot \varepsilon_z \), and note that
\[(d')^\perp = (d_z)^\perp = \{ Y \in \text{rep}(Q) ; Y(z) = 0 \}, \]
as the one dimensional representation \(E_z \) supported at \(z \) is simple projective, and \(\text{Hom}_Q(E_z, Y) \) is isomorphic to \(Y(z) \). □

Proposition 2.5. Let \(d = d' + d'' \), and suppose that any \(T \) in a dense open set \(\mathcal{U} \subseteq \text{rep}(Q,d) \) decomposes as \(T = T' \oplus T'' \) for some \(T' \in \text{rep}(Q,d') \) and some \(T'' \in \text{rep}(Q,d'') \). Then \(d^\perp \cap (d'^\perp) \subseteq d^\perp \).

Proof. The inclusion \((d'^\perp) \cap (d'^\perp) \subseteq d^\perp \) follows from Proposition 2.3. Conversely, let \(Y \in d^\perp \), and choose \(T \in \mathcal{U} \) with \([T, Y] = 1[T, Y] = 0 \). Then clearly
\[\langle T', Y \rangle = 1[T', Y] = [T'', Y] = 1[T'', Y] = 0 \]
if \(T = T' \oplus T'' \) is a decomposition with \(\text{dim} T' = d' \) and \(\text{dim} T'' = d'' \). □
2.4. Finally, we wish to study the behavior of d^1 under reflection functors. Let z be a sink of Q, and let $\alpha_j : y_j \to z$, $j = 1, \ldots, s$ be the arrows of Q with head z. Define a new quiver Q', obtained from Q by deleting z and $\alpha_1, \ldots, \alpha_s$ and by adding a new vertex z' as well as arrows $\beta_j : z' \to y_j$, $j = 1, \ldots, s$. Let E_z and E'_z be the one-dimensional representations of Q and Q', supported at z and z', respectively. Note that E_z is simple projective in $\text{rep}(Q)$ and E'_z is simple injective in $\text{rep}(Q')$.

We consider the reflection functor

$$\mathcal{F} : \text{rep}(Q) \to \text{rep}(Q')$$

associated with z. Recall that

$$(\mathcal{F}X)(i) = \begin{cases} X(i) & i \neq z', \\
\text{Ker} \left(\bigoplus X(y_j) \xrightarrow{[X(\alpha_1), \ldots, X(\alpha_s)]} X(z) \right) & i = z',
\end{cases}$$

and that

$$(\mathcal{F}X)(\beta_i) : (\mathcal{F}X)(z') \to (\mathcal{F}X)(y_i) = X(y_i)$$

is the inclusion of $(\mathcal{F}X)(z')$ into $\bigoplus_{j=1}^{s} X(y_j)$ followed by the projection to $X(y_i)$ (see [1], [4]). The functor \mathcal{F} restricts to an equivalence

$$\mathcal{F} : (\text{rep}(Q))' \to (\text{rep}(Q'))'$$

from the full subcategory $(\text{rep}(Q))'$ of $\text{rep}(Q)$ whose objects do not contain E_z as a direct summand, or equivalently have no non-trivial morphisms to E_z, to the full subcategory $(\text{rep}(Q'))'$ of $\text{rep}(Q')$ whose objects do not contain E'_z as a direct summand.

Suppose $d \in \mathbb{N}^{Q_0}$ satisfies $d_z < \sum_{x=z} d_{x} \alpha$, and define $d' \in \mathbb{Z}^{Q_0}$ by

$$d'_z = \begin{cases} d_z, & x \neq z', \\
\sum_{x=z} d_{x} - d_z, & x = z'.
\end{cases}$$

Note that $d'_z > 0$. For $T \in (\text{rep}(Q))'$ with $\text{dim} T = d$, we have $\mathcal{F}T \in (\text{rep}(Q'))'$ with $\text{dim} \mathcal{F}T = d'$.

Proposition 2.6. Let Q be a quiver with a sink z, $d \in \mathbb{N}^{Q_0}$ with $d_z < \sum_{x=z} d_{x} \alpha$, and let Q', d' be defined as above. Then $\mathcal{F}(d^1) = (d')^1$.

Proof. We will prove that $\mathcal{F}Y \in (d')^1$ for $Y \in d^1$; the other inclusion is obtained from using the reflection functor $\mathcal{F}^{-1} : (\text{rep}(Q'))' \to (\text{rep}(Q))'$. Choose $T \in \text{rep}(Q, d)$ such that $[T, Y] = 1[T, Y] = 0$ and such that E_z is not a direct summand of T. This is possible as generically $[T, E_z] = 0$ on $\text{rep}(Q, d)$. Note that E_z is not a direct summand of Y either as

$$\langle d, e_z \rangle = -d'_z = -1[T, E_z] < 0.$$

But then we have $T, Y \in (\text{rep}(Q))'$, and we know

$$[\mathcal{F}T, \mathcal{F}Y] = [T, Y] = 0 \quad \text{and} \quad 1[\mathcal{F}T, \mathcal{F}Y] = 1[T, Y] = 0.$$

So $\mathcal{F}Y$ belongs to $(d')^1$. \hfill \square
3. Extended Dynkin quivers

3.1. Throughout this section Q is an extended Dynkin quiver. Remember that by \mathcal{E} we denote the set $\mathcal{E} = \{ \mu \in \mathbb{P}^1(k); r_\mu > 1 \}$, where r_μ is the number of simple objects in the category R_μ. We need to recall two more results from [11].

Lemma 3.1. Let X_P, X_I, X_μ be a non-zero preprojective, preinjective and regular representation in R_μ, respectively, $\mu \in \mathbb{P}^1(k)$. Then we have

(i) $[X_{\mu}, X_P] = 0$ for all μ,
(ii) $[X_I, X_\mu] = 0$ for all μ,
(iii) $[X_I, X_P] = 0$,
(iv) $\mu \neq \nu$,
(v) $X_P, X_\mu > 0$ and $X_I, X_\mu > 0$ if $\mu \notin \mathcal{E}$.

3.2. For $r \geq 1$ we denote by C_r the oriented cycle with r vertices:

$$\begin{array}{c}
1 \x{\alpha_1} 2 \x{\alpha_2} \cdots \x{\alpha_{r-1}} r \\
\end{array}$$

We call a representation X of C_r nilpotent if there is a positive integer N_X such that $X(\pi) = 0$ for any path π of length greater than or equal to N_X.

Lemma 3.2. For $\mu \in \mathbb{P}^1(k)$, the category R_μ is equivalent to the category of nilpotent representations of the oriented cycle C_{r_μ}.

Fix a non-prehomogeneous dimension vector d with canonical decomposition $d = p \cdot h + e$, $p \geq 1$. We choose $V \in \text{rep}(Q, e)$ such that the $\text{GL}(e)$-orbit of V is open, and we decompose $V = \bigoplus_{\mu \in \mathcal{E}} V_\mu$, $V_\mu \in R_\mu$. With this notation we have the following results.

Proposition 3.3. Let $e_\mu = \dim V_\mu$ for $\mu \in \mathcal{E}$. Then:

(i) $h^\perp = \prod_{\mu \in \mathbb{P}^1(k)} R_\mu$.
(ii) $d^\perp = h^\perp \cap e^\perp$.
(iii) An indecomposable representation $Y \in R_\mu$ belongs to e^\perp if and only if either $\mu \notin \mathcal{E}$ or, for $\mu \in \mathcal{E}$, $Y \in (e_\mu)^\perp$.

Proof. (i) and (iii) follow directly from Lemma 3.1 and (ii) is a consequence of Proposition 2.3.5.

Our next goal is to describe $(e_\mu)^\perp$ for $\mu \in \mathcal{E}$. Fix $r \geq 1$, and set $C = C_r$. By \mathcal{N} we denote the full subcategory of $\text{rep}(C)$ whose objects are the nilpotent representations. Note that \mathcal{N} is an exact abelian subcategory of $\text{rep}(C)$. Let T be a representation in \mathcal{N} having a dense open orbit in $\text{rep}(C, d)$, where $d = \dim T$. Up to renumbering the vertices of C, we may suppose that $d_\iota \leq d_i$ for any vertex i of C. Then the composition $T(\alpha_{r-1}) \circ \cdots \circ T(\alpha_1) \circ T(\alpha_\iota)$ is generically an automorphism. If d_ι were positive, then T could not be nilpotent. So we see that $d_\iota = 0$.

An indecomposable representation Y in \mathcal{N} is uniquely determined by its socle, which is simple and thus corresponds to a vertex i of C, and its dimension l. Let ω be the path in C of length l stopping at i; it is the shortest path stopping at i with $Y(\omega) = 0$. Note that in this way we obtain a bijection from the set of indecomposable representations in \mathcal{N}, up to isomorphism, to the set of all paths of positive length in C. If ω is such a path, we let Y_ω be the corresponding indecomposable.
The following lemma is not difficult; its proof is left to the reader. By \(W^*\) we denote the dual of the vector space \(W\).

Lemma 3.4. Let \(\omega\) be a path of positive length in \(C\). Then we have for any representation \(X\) of \(C\):

\[
\text{Hom}_C(X, Y^\omega) \simeq (\text{Coker} X(\omega))^* \quad \text{and} \quad \text{Ext}_C^1(X, Y^\omega) \simeq (\text{Ker} X(\omega))^* .
\]

We obtain the following consequence.

Corollary 3.5. Let \(\omega\) be a path of positive length in \(C\), let \(T\) be a representation in \(\mathcal{N}\) with \(\frac{1}{2}[T, T] = 0\), and set \(d = \dim T\). Then we have:

(i) \(Y^\omega \in d^\perp\) if and only if \(d_x \geq d_{h\omega} = d_{t\omega}\) for all vertices of \(\omega\),

(ii) \(Y^\omega\) is a simple object in \(d^\perp\) if and only if \(d_x > d_{h\omega} = d_{t\omega}\) for all inner vertices of \(\omega\).

Here we set \(t\omega = t\beta_1\) and \(h\omega = h\beta_1\) for \(\omega = \beta_1 \cdots \beta_1\), and we call \(x\) a vertex of \(\omega\) if \(x\) is a tail or a head of some \(\beta_i\). An inner vertex of \(\omega\) is a vertex of the form \(t\beta_i\), \(i > 1\).

Proof. (i) From Lemma 3.4 we see that \(Y^\omega \in d^\perp\) if and only if \(T(\omega)\) is an isomorphism and therefore \(d_{h\omega} = d_{t\omega}\). As \(T(\omega)\) factors through \(T(x)\) for any vertex \(x\) of \(\omega\), we find \(d_x \geq d_{h\omega} = d_{t\omega}\). Conversely, this condition implies that \(T(\omega)\), which is a composition of generic maps, one for each arrow \(\beta_i\), is an isomorphism.

(ii) Assume \(Y^\omega\) is simple and there is an inner vertex \(x\) with \(d_{t\omega} = d_x = d_{h\omega}\). Denote by \(\omega'\) the subpath of \(\omega\) from \(x\) to \(h\omega\). By (i), \(Y^\omega' \in d^\perp\), and clearly \(Y^\omega'\) is a proper subrepresentation of \(Y^\omega\). Conversely, a representation \(Y^\omega\) with \(d_x > d_{h\omega} = d_{t\omega}\) for all inner vertices cannot have any proper subrepresentation in \(d^\perp\), again by (i). \(\square\)

Proposition 3.6. Let \(T\) be a representation in \(\mathcal{N}\) with \(\frac{1}{2}[T, T] = 0\), and set \(d = \dim T\). Then \(d^{1\perp}\) is an abelian category with \#(\(C\)) \(-\) \(\sigma(T) = r - \sigma(T)\) simple objects.

Proof. Let \(\hat{\mathcal{C}}\) be the quiver obtained from \(\mathcal{C} = C_r\) by deleting the arrow \(\alpha_r\); it is an \(\mathbb{A}_r\)-quiver. Recall that \(\mathcal{C}\) in fact lies in \(\text{rep}(\hat{\mathcal{C}}, \mathbf{d})\) as \(d_r = 0\). Our strategy is to show that \(d^{1\perp}\) and \(\hat{\mathcal{C}}\) have the same simple objects. Then our result follows from Schofield’s result [12, Thm. 2.5], as \(\hat{\mathcal{C}}\) is a quiver of finite representation type and thus \(\mathbf{d}\) is prehomogeneous when viewed as a dimension vector for \(\hat{\mathcal{C}}\).

For \(Y \in \text{rep}(\hat{\mathcal{C}})\), we have

\[
\text{Hom}_C(T, Y) = \text{Hom}_{\hat{\mathcal{C}}}(T, Y) \quad \text{and} \quad \langle \mathbf{d}, \dim Y \rangle_C = \langle \mathbf{d}, \dim Y \rangle_{\hat{\mathcal{C}}},
\]

as \(d_r = 0\). We conclude that \(d^{1\perp} = d^{1\perp} \cap \text{rep}(\hat{\mathcal{C}})\). Let \(Y^\omega\) be a simple object of \(d^{1\perp}\). By Corollary 3.5 the vertex \(r\) cannot be an inner vertex of \(\omega\), as \(d_r = 0\). Then \(Y^\omega(\alpha_r) = 0\) by the definition of \(Y^\omega\), and hence \(Y^\omega \in \text{rep}(\hat{\mathcal{C}})\). \(\square\)

Proposition 3.7. Let \(Q\) be an extended Dynkin quiver and \(\mathbf{d} \in \mathbb{N}^{Q_0}\) a non-prehomogeneous dimension vector with canonical decomposition \(\mathbf{d} = p\cdot \mathbf{h} + \mathbf{e}\), \(p \geq 1\). If either \(p \geq 2\) or \(Q\) is an \(\mathbb{A}_{n-1}\)-quiver, the algebra \(k[\text{rep}(Q, \mathbf{d})]^{\text{SL}(\mathbf{d})}\) is a polynomial ring in \(n + p - 1 - \sigma(V)\) variables, where \(V \in \text{rep}(Q, \mathbf{e})\) has an open orbit.
Proof. The main theorem of Skowroński and Weyman in [17] says that, under our assumptions, \(k[\text{rep}(Q, \mathbf{d})]^{\text{SL}(d)} \) is the quotient of a polynomial ring \(k[c_0, \ldots, c_p, f_Y] \) by an ideal generated by \#\(\mathcal{E} \) relations, each allowing for the cancellation of one of the \(c_i \)'s from the list of generators, where \(Y \) ranges over the simple non-homogeneous objects in \(\mathbf{d}^\perp \). Indeed, by Lemma 3.2 and Corollary 3.3 the simple objects in \(\mathcal{R}_\mu \) correspond bijectively to the "admissible arcs" of [17]. The number of simple objects of \(\mathbf{d}^\perp \) which belong to \(\mathcal{R}_\mu \) is \(r_\mu - \sigma(V_\mu) \), where \(V = \bigoplus_{\mu \in \mathcal{E}} V_\mu \), by Proposition 3.6.

So the number of simple non-homogeneous objects in \(\mathbf{d}^\perp \) equals

\[
\sum_{\mu \in \mathcal{E}} (r_\mu - \sigma(V_\mu)) = \sum_{\mu \in \mathcal{E}} r_\mu - \sigma(V) = n - 2 + \#\mathcal{E} - \sigma(V)
\]

as \(\sum_{\mu \in \mathcal{E}} (r_\mu - 1) = n - 2 \). Taking into account the \#\(\mathcal{E} \) relations, we conclude that \(k[\text{rep}(Q, \mathbf{d})]^{\text{SL}(d)} \) is a polynomial ring on

\[
(p + 1) + (n - 2 + \#\mathcal{E} - \sigma(V)) - \#\mathcal{E} = p + n - 1 - \sigma(V)
\]
generators.

4. Proof of the theorem

4.1. We recall the notation and assumptions for our theorem and keep them fixed throughout this section: \(Q \) is an extended Dynkin quiver with \#\(Q_0 = n \), not an oriented cycle, \(\mathbf{d} \in \mathbb{N}^{Q_0} \) is a non-prehomogeneous dimension vector with canonical decomposition \(d = p \cdot \mathbf{h} + \mathbf{e} \), \(V = \bigoplus_{i=1}^{\sigma(V)} V_i^{\lambda_i} \) is a representation in the open orbit of \(\text{rep}(Q, \mathbf{e}) \) with \(V_i \) indecomposable and pairwise non-isomorphic. We assume that either \(Q \) is of type \(\tilde{A}_{n-1} \) or else \(p \geq 3 \) and \(\lambda_i \geq 3 \) for \(i = 1, \ldots, \sigma(V) \). Note that by Proposition 2.1, the variety \(Z_{Q, \mathbf{d}} \) of common zeros of all non-constant semi-invariants has the following description:

\[
Z_{Q, \mathbf{d}} = \{ X \in \text{rep}(Q, \mathbf{d}) ; \ [X, Y] \neq 0 \text{ for all } Y \in \mathbf{d}^\perp, Y \neq 0 \} = \{ X \in \text{rep}(Q, \mathbf{d}) ; \ [1, X, Y] \neq 0 \text{ for all } Y \in \mathbf{d}^\perp, Y \neq 0 \}.
\]

The next result is an immediate consequence of Lemma 3.1 and Proposition 3.3.

Proposition 4.1. Any representation \(X \) in \(Z_{Q, \mathbf{d}} \) has a nonzero preprojective (and a preinjective) direct summand.

The following corollary implies part (ii) of our theorem.

Corollary 4.2. Any irreducible component \(\mathcal{C} \) of \(Z_{Q, \mathbf{d}} \) is the closure of some orbit \(\text{GL}(\mathbf{d}) \ast X \).

We call \(X \in Z_{Q, \mathbf{d}} \) generic if \(\text{GL}(\mathbf{d}) \ast X \) is an irreducible component of \(Z_{Q, \mathbf{d}} \).

Proof. Otherwise, \(\mathcal{C} \) contains an infinite number of distinct orbits of maximal dimension, none of which belong to any other irreducible component of \(Z_{Q, \mathbf{d}} \). Some must be given by representations having a direct summand from \(\mathcal{R}_\mu, \mu \not\in \mathcal{E} \). If \(X = X_1 \oplus X_2 \oplus X_3 \) is one of them with \(X_1 \neq 0 \) preprojective and \(X_2 \in \mathcal{R}_\mu, \mu \not\in \mathcal{E} \), there exists a non-split extension

\[
0 \rightarrow X_1 \rightarrow \bar{X}_1 \rightarrow X_2 \rightarrow 0,
\]

by Lemma 3.1. Note that \(\bar{X}_1 \) still contains a non-zero preprojective summand, as

\[
\partial(\text{dim } \bar{X}_1) = \partial(\text{dim } X_1) + \partial(\text{dim } X_2) < 0.
\]
Therefore $[\tilde{X}_1, H] \neq 0$ for any $\nu \notin \mathcal{E}$. For $Y \in d^\perp$ simple non-homogeneous, we have $[X_2, Y] = 0$ by Lemma 3.1. Mapping the short exact sequence above to Y, we conclude that

$$[\tilde{X}_1 \oplus X_3, Y] = [X_1 \oplus X_2 \oplus X_3, Y].$$

Hence $\tilde{X} = \tilde{X}_1 \oplus X_3$ still belongs to $Z_{Q,d}$, and even to C, as X lies in the closure of $\text{GL}(d) \ast \tilde{X}$. This contradicts the maximality of the dimension of $\text{GL}(d) \ast X$. □

4.2. By $\tilde{d} = d|_{\tilde{Q}}$, we denote the full subquiver of Q with vertex set $Q_0 \setminus \{z\}$, and we set $\bar{d} = d|_{\tilde{Q}}$. For $X \in \text{rep}(Q)$, we denote by $\tilde{X} \in \text{rep}(\tilde{Q})$ the restriction of X to \tilde{Q}.

We fix a sink z in Q, and we define Q' as in Section 2.4. Note that generically a representation T in $\text{rep}(Q, d)$ is regular and hence does not contain the simple projective E_z as a direct summand and thus $[T, E_z] = 0$. But E_z does not belong to d^\perp either. We conclude that

$$\langle d, e_z \rangle = d_z - \sum_{j=1}^{s} d_{y_j} = [T, E_z] - 1[T, E_z] < 0,$$

and therefore we may apply Proposition 2.6. The same arguments yield that either $e_z = 0$ or else $e_z < \sum_{j=1}^{s} e_{y_j}$. In either case we have $e'_z = \sum_{j=1}^{s} e_{y_j} - e_z \geq 0$.

Proposition 4.3. If $X \in Z_{Q,d}$ does not contain the simple projective E_z as a direct summand, we have that X is generic in $Z_{Q,d}$ if and only if FX is generic in $Z_{Q',d'}$. Moreover,

$$\text{codim}_{\text{rep}(Q, d)} \text{GL}(d) \ast \tilde{X} = \text{codim}_{\text{rep}(Q', d')} \text{GL}(d') \ast F\tilde{X}.$$

Proof. We know that $X \in (\text{rep}(Q))'$ and $FX \in (\text{rep}(Q'))'$. The sets

$$\text{rep}(Q, d)' = \text{rep}(Q, d) \cap (\text{rep}(Q))', \quad \text{rep}(Q', d')' = \text{rep}(Q', d') \cap (\text{rep}(Q'))'$$

are open as $[-, E_z] = 0$ and $[E_z, -] = 0$ are open conditions. Moreover, they are related by a fiber bundle construction [3]. In particular, there is a bijection compatible with F between the $\text{GL}(d)$-orbits in $\text{rep}(Q, d)'$ and the $\text{GL}(d')$-orbits in $\text{rep}(Q', d')'$, preserving their codimensions, closures and inclusions between closures. Hence the claim follows from Proposition 2.6. □

4.2. By \tilde{Q} we denote the full subquiver of Q with vertex set $Q_0 \setminus \{z\}$, and we set $\bar{d} = d|_{\tilde{Q}}$. For $X \in \text{rep}(Q)$, we denote by $\tilde{X} \in \text{rep}(\tilde{Q})$ the restriction of X to \tilde{Q}.

We set

$$Z''_{Q,d} = \{X \in Z_{Q,d}; \text{ E_z is a direct summand of } X\}.$$

As a generic $X \in Z_{Q,d}$ contains a non-zero preprojective direct summand and as any indecomposable preprojective representation becomes simple projective under a suitable series of reflection functors, part (i) of our theorem will follow if we show that

$$\text{codim}_{\text{rep}(Q, d)} Z''_{Q,d} = n + p - 1 - \sigma(V).$$

Proposition 4.4. The map

$$\text{rep}(Q, d) \rightarrow \text{rep}(\tilde{Q}, \bar{d}) \times \text{Mat}(d_z \times \sum_{j=1}^{s} d_{y_j}), k)$$

sending X to $(\tilde{X}, (X(\alpha_1) \cdots X(\alpha_s)))$ restricts to an isomorphism

$$Z''_{Q,d} \cong Z_{\tilde{Q},\bar{d}} \times \mathcal{M},$$

where $\mathcal{M} = \{A \in \text{Mat}(d_z \times \sum_{j=1}^{s} d_{y_j}), k); \text{ rank } A < d_z\}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Indeed, \(X \in \text{rep}(Q, d) \) belongs to \(Z^0_{Q,d} \) if and only if \(X \simeq X' \oplus E_z \) and \([X', Y] \neq 0\) for all non-zero \(Y \in d^\perp \) with \(Y(z) = 0\). By Corollary \ref{cor:corollary2.4}, these are exactly the objects of \((\bar{Q})^1 \) in \(\text{rep}(\bar{Q}, \bar{d}) \), extended by 0 to \(Q \). But if \(Y(z) = 0\), we have \([X', Y] = [X, Y] \). The result follows.

Let \(\bar{H} \) be a representation in the open orbit of \(\text{rep}(\bar{Q}, \bar{d}) \), and note that the image \(\bar{H}_\mu \) of the simple homogeneous representation \(H_\mu \) is isomorphic to \(\bar{H} \) for any \(\mu \notin \mathcal{E} \). We will need the following lemma.

Lemma 4.5.

(i) \(\sigma(\bar{H}) \leq 3h_z - 2 = 3(h_z - 1) + 1 \).

(ii) If either \(Q \) is an \(\tilde{k}_{n-1} \)-quiver or else \(V = \bigoplus V^\lambda_i \) with \(\lambda_i \geq 3 \) for all \(i \), then \(\sigma(V) \leq \sigma(V) + e'_z \).

Proof. (i) Clearly \(\bar{H} \) has at most as many pairwise non-isomorphic direct summands as \(\sum_{j=1}^s \dim_k H_\mu(y_j), \mu \notin \mathcal{E} \), which implies that

\[
\sigma(\bar{H}) \leq \sum_{j=1}^s h_{y_j} = 2h_z.
\]

The last equality follows from

\[
0 = \langle e_z, h \rangle + \langle h, e_z \rangle = h_z + h_z - \sum_{j=1}^s h_{y_j}.
\]

This yields our claim except in the case \(h_z = 1 \). But in that case, \(\bar{Q} \) is a Dynkin quiver, and we have

\[
[\bar{H}, \bar{H}] = \langle \bar{h}, \bar{h} \rangle_Q = \langle \bar{h} - e_z, \bar{h} - e_z \rangle = \langle e_z, e_z \rangle = 1.
\]

Recall that \(1[\bar{H}, \bar{H}] = 0 \) as the orbit of \(\bar{H} \) is open. In particular, \(\bar{H} \) is indecomposable and \(\sigma(\bar{H}) = 1 \).

(ii) We restrict \(V \) to the support of \(e \), which is a tame quiver \(K \) for which \(e \) is a sincere dimension vector. If \(e_z = 0 \), i.e. if \(z \) is not \(\sigma \)-exceptional, then \(K = K, V = V \) and \(e'_z \geq 0 \). Otherwise, \(z \) is a sink of \(K \), and we can apply our results from \(\mathbb{[9]} \) if \(\mathbb{K} \) is a complete intersection of codimension \(\#K_0 - \sigma(V) \), and \(Z_{\mathbb{K}}^{\mathbb{K},e} \) is a complete intersection of codimension \(\#K_0 - 1 - \sigma(V) \). Note that either every indecomposable \(V_i \mid K \) arising in \(V \mid K \) is at least 3. Set

\[
Z^{\mathbb{K},e}_{\mathbb{K},e} = \{ X \in \mathbb{Z}_{\mathbb{K},e}; [X, E_z] \neq 0 \}
\]

and remember that, as in Proposition \ref{prop:prop4.4}, \(Z^{\mathbb{K},e}_{\mathbb{K},e} \sim \mathbb{Z}_{\mathbb{K}}^{\mathbb{K},e} \times \mathcal{M}' \) with

\[
\mathcal{M}' = \{ B \in \text{Mat}(e_z \times \sum_{j=1}^s e_{y_j} , k); \text{rank}(B) < e_z \}.
\]

We conclude that

\[
\#K_0 - \sigma(V) = \text{codim}_{\text{rep}(\mathbb{K}, e)} Z_{\mathbb{K},e} \leq \text{codim}_{\text{rep}(\mathbb{K}, e)} Z^{\mathbb{K},e}_{\mathbb{K},e}
\]

\[
= \#K_0 - 1 - \sigma(V) + e'_z + 1,
\]

as \(\text{codim} \mathcal{M}' = \sum_{j=1}^s e_{y_j} - e_z + 1 = e'_z + 1 \). The result follows. \(\square \)
We are now ready to finish the proof of part (i) of our theorem. We need to show that
\[\text{codim}_{\text{rep}(Q, \mathbf{d})} Z''_{Q, \mathbf{d}} \geq n + p - 1 - \sigma(V). \]
Note that \(Q \) is a disjoint union of Dynkin quivers; in fact it is an \(A_{n-1} \)-quiver if \(Q \) is an \(\tilde{A}_{n-1} \)-quiver. In the remaining cases, the multiplicity of any indecomposable direct summand in the representation \(\overline{Q} \odot \overline{V} \in \text{rep}(Q, \mathbf{d}) \), whose \(\text{GL}(\mathbf{d}) \)-orbit is open, is at least 3. Therefore we know from [9] that
\[\text{codim} Z_{Q, \mathbf{d}} = n - 1 - \sigma(\overline{V} \oplus \overline{H}). \]

We compute, using Proposition 4.4, the preceding lemma, and [9] for \((\overline{Q}, \mathbf{d}) \):
\[
\text{codim}_{\text{rep}(Q, \mathbf{d})} Z''_{Q, \mathbf{d}} - (n + p - 1 - \sigma(V))
= \text{codim}_{\text{rep}(Q, \mathbf{d})} Z_{Q, \mathbf{d}} + (d'_z + 1) - (n + p - 1 - \sigma(V))
= (n - 1 - \sigma(\overline{V} \oplus \overline{H})) + (p h_z + e'_z + 1) - (n + p - 1 - \sigma(V))
= (\sigma(\overline{V}) + \sigma(\overline{H}) - \sigma(\overline{V} \oplus \overline{H})) + (p h_z - 1) + 1 - \sigma(\overline{H})
+ (\sigma(\overline{V}) + e'_z - \sigma(\overline{V})) \geq 0.
\]

In the last sum, each summand is non-negative. This is obvious for the first one, and it follows from the preceding lemma for the second and the third. Note that either \(p \geq 3 \) or else \(Q \) is an \(\tilde{A}_{n-1} \)-quiver and \(h_z = 1 \).

4.3. Finally, we prove part (iii) of the theorem.

Lemma 4.6. For \(\mathbf{d} = p h + e, p \geq 3, Z_{Q, \mathbf{d}} \) contains a generic representation \(X = X_P \oplus X_R \oplus X_T \) with \(X_P \) preprojective, \(X_R \) regular, and \(X_T \) preinjective such that the preprojective part \(X_P \) has defect \(\partial(X_P) = -1 \).

Note that in particular \(X_P \) is indecomposable.

Proof. We assume there is a sink \(z \) with \(h_z = 1 \). If no such sink exists, there is a source \(y \) with \(h_y = 1 \), and applying the dual arguments we find that \(\partial(X_T) = 1 \), which implies \(\partial(X_P) = -1 \).

We start from a representation \(W \) with dimension vector \(p h \) which is a direct sum of all simple regular non-homogeneous representations and some simple homogeneous representations (if necessary). Obviously there is an exact sequence in \(\text{rep}(Q) \) of the form
\[0 \rightarrow E_z \rightarrow W \rightarrow W' \rightarrow 0 \]
for some \(W' \). Then no indecomposable direct summand of \(W' \) is preprojective, by Lemma 5.1. Let \(X' = E_z \oplus W' \). Thus the defect of the preprojective part \(E_z \) of \(X' \) equals \((h, e_z) = -h_z = -1 \). Observe that \([X', Y] \neq 0 \) for any regular representation \(Y \neq 0 \). Indeed, if \(Y \) is simple homogeneous, then \([X', Y] \geq [E_z, Y] > 0 \), and if \(Y \) is simple non-homogeneous, then \([X', Y] \geq [W, Y] > 0 \). Thus \(X' \) lies in \(Z_{Q, \mathbf{d}} \).

\(X' \) belongs to \(\text{GL}(\mathbf{d}) \cdot X \) for some generic \(X \), which we decompose as \(X = X_P \oplus X_R \oplus X_T \) with \(X_P \) preprojective, \(X_R \) regular, and \(X_T \) preinjective. By Proposition 4.1 we know that \(X_P \neq 0 \) and thus \(\partial(X_P) \leq -1 \). Choose \(\nu \in \mathbb{P}^1(k) \setminus \mathcal{E} \) in such a way that \(H_{\nu} \) is not a direct summand of \(X \) nor of \(X' \), and remember that \([X, H_{\nu}] \leq [X', H_{\nu}] \). Using Lemma 3.1 we compute:
\[
1 \leq -\partial(X_P) = \langle \dim X_P, h \rangle = [X_P, H_{\nu}] = [X, H_{\nu}]
\leq [X', H_{\nu}] = -\partial(X'_P) = 1.
\]

\end{proof}
For each natural number \(r \), the vector \(\dim X_P + rh \) is the dimension vector of some indecomposable representation \(X_P[r] \), which is still preprojective with defect \(-1\) and thus has an open orbit in \(\text{rep}(Q, \dim X_P + rh) \). For \(s \in \mathbb{N} \) we let \(X_T[s] \) be an indecomposable representation with \(\dim X_T[s] = \dim X_T + sh \). Set \(X[r, s] = X_P[r] \oplus X_T \oplus X_T[s] \). The following result implies part (iii) of our theorem:

Proposition 4.7. The representations \(X[r, s] \) are pairwise non-isomorphic and generic in \(Z_{Q,d+(r+s)h} \).

Proof. Choose \(Y \in (d + (r+s)h)^\perp = d^\perp \), and remember that \(Y \) is regular and has defect \(0 \). Therefore we have

\[
[X_P[r], Y] = \langle \dim X_P[r], \dim Y \rangle = \langle \dim X_P, \dim Y \rangle = [X_P, Y],
\]

and thus

\[
[X[r, s], Y] = [X_P, Y] + [X_T, Y] = [X, Y] > 0
\]

and \(X[r, s] \) belongs to \(Z_{Q,d+(r+s)h} \).

In order to show that \(X[r, s] \) is generic, it is enough to prove

\[
1[X[r, s], X[r, s]] = n + p + r + s - 1 - \sigma(V),
\]

which follows if

\[
1[X[r, s], X[r, s]] = 1[X, X] + r + s.
\]

As above we have

\[
1[X_T, X_P[r]] = 1[X_T, X_P] \quad \text{and} \quad 1[X_T, X_T] = 1[X_T, X_T].
\]

We compute

\[
1[X_T[s], X_P[r]] = -(\dim X_T[s], \dim X_P[r])
\]

\[
= -(\dim X_T + sh, \dim X_P + rh)
\]

\[
= 1[X_T, X_P] - s \partial(\dim X_P) + r \partial(\dim X_T)
\]

\[
= 1[X_T, X_P] + s + r.
\]

By Lemma 3.3 these are the only terms that do not vanish. \(\square \)

5. **The oriented cycle**

5.1. In this section we wish to generalize our results to the only extended Dynkin quiver not considered so far, the oriented cycle, i.e. the quiver \(Q \) with \(Q_0 = \{1, 2, \ldots, n\} \) and \(Q_1 = \{\alpha_i : i \mapsto (i+1); i \in Q_0\} \); we view the elements of \(Q_0 \) as representatives of \(\mathbb{Z}/n\mathbb{Z} \). The category \(\text{rep}(Q) \) of finite dimensional representations of \(Q \) decomposes into a family \(\prod_{\mu \in k} R_\mu \) of uniserial categories \(R_\mu \) parametrized by \(\mu \in k \). For \(\mu \neq 0 \), \(R_\mu \) contains a unique simple representation \(H_\mu \) with \(\dim H_\mu = h \), where \(h_i = 1 \) for \(i \in Q_0 \). For \(\mu = 0 \), \(R_0 \) consists of all nilpotent representations (compare Section 3.2). If \(n \geq 2 \), its simple objects are just the one-dimensional representations of \(Q \).

We recall the description of the semi-invariants for \(\text{rep}(Q, d) \) from [10] and [17]. For \(d \in \mathbb{N}Q_0 \), we may assume that \(d_1 = p \leq d_i, i \in Q_0 \), up to renumbering the vertices of \(Q \). For \(X \in \text{rep}(Q, d) \), the coefficients \(c_1(X), \ldots, c_p(X) \) of the characteristic polynomial

\[
\det(T - X(\alpha_n) \cdots X(\alpha_1)) = T^p + c_1(X)T^{p-1} + \cdots + c_p(X)
\]
are clearly invariant under $\text{GL}(d)$. For two integers $i < j \leq i + n$, the path $\alpha_{j-1} \cdots \alpha_i$ is called an admissible arc $A = [i, j]$ if $d_i = d_j < d_m$ for all m with $i < m < j$. For any admissible arc $A = [i, j]$ the determinant

$$f_A(X) = \det(X(\alpha_{j-1}) \cdots \cdot X(\alpha_i))$$

is a semi-invariant. We call an admissible arc $B = [i, j]$ minimal if $d_i = d_j = p$.

Proposition 5.1. Let Q be the oriented cycle, and let $d \in \mathbb{N}^{Q_0}$ with $d_1 = p \leq d_i$ for all $i \in Q_0$.

(i) The algebra of semi-invariants is the polynomial algebra

$$k[\text{rep}(Q, d)]^{SL(d)} = k[c_1, \ldots, c_p; \{f_A\}] / \left(\prod f_B - c_p\right),$$

where A ranges over all admissible and B over all minimal admissible arcs of Q.

(ii) The algebra $k[\text{rep}(Q, d)]^{GL(d)}$ of $\text{GL}(d)$-invariants is a polynomial ring in c_1, \ldots, c_p.

Proof. Both statements are essentially contained in [17]: (i) is stated explicitly, and (ii) is the fact that an invariant is a semi-invariant with trivial weight. \qed

Theorem 2. Let Q be the oriented cycle, $d \in \mathbb{N}^{Q_0}$ with $d_1 = p \leq d_i$ for all $i \in Q_0$.

(i) The set $Z_{Q,d}$ of common zeros of $c_1, \ldots, c_p; \{f_A\}$ is a complete intersection, where A ranges over all admissible arcs of Q.

(ii) The set N_d of nilpotent representations in $\text{rep}(Q, d)$ is the set of common zeros of c_1, \ldots, c_p, it is a complete intersection.

As nilpotent representations do not depend on parameters, any irreducible component of $Z_{Q,d}$ or N_d is the closure of an orbit. The number of irreducible components of $Z_{Q,d}$ can be shown to be bounded for the oriented cycle. Note that as a consequence of our two theorems, we obtain that $Z_{Q,d}$ is a complete intersection for any A_{n-1}-quiver.

5.2. Our strategy is to compare $\text{rep}(Q, d)$ with $\text{rep}(\tilde{Q}, \tilde{d})$, where

$$\tilde{Q} = \frac{\alpha_1 \cdots \alpha_n}{\beta}$$

and

$$\tilde{d}_i = \begin{cases} d_i & 1 \leq i \leq n, \\ p & d_i = d_1 \quad i = 0. \end{cases}$$

For $Y \in \text{rep}(\tilde{Q}, \tilde{d})$ the coefficients $\tilde{c}_0(Y), \ldots, \tilde{c}_p(Y)$ of the polynomial

$$\det(Y(\beta)T - Y(\alpha_n) \cdots \cdot Y(\alpha_1)) = \tilde{c}_0(Y)T^p + \tilde{c}_1(Y)T^{p-1} + \cdots + \tilde{c}_p(Y)$$

are semi-invariants; note that $\tilde{c}_0(Y) = \det(Y(\beta))$. For every admissible arc $A = [i, j]$ of Q as defined in Section 5.1, there is a semi-invariant \tilde{f}_A given by

$$\tilde{f}_A(Y) = \det(Y(\alpha_{j-1}) \cdots \cdot Y(\alpha_i)).$$

From [17] we know that

$$k[\text{rep}(\tilde{Q}, \tilde{d})]^{SL(\tilde{d})} = k[\tilde{c}_1, \ldots, \tilde{c}_p; \{\tilde{f}_A\}] / \left(\prod \tilde{f}_B - \tilde{c}_p\right),$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where A ranges over all admissible and B over all minimal admissible arcs for Q.

We leave the proof of the following lemma to the reader.

Lemma 5.2. The map
$$\Phi : \text{GL}(p) \times \text{rep}(Q, d) \to \text{rep}(\tilde{Q}, \tilde{d})$$
given by
$$\Phi(s, X)(\gamma) = \begin{cases}
X(\alpha_i) & \gamma = \alpha_i, \ i < n, \\
 s \cdot X(\alpha_n) & \gamma = \alpha_n, \\
 s & \gamma = \beta
\end{cases}$$
is a $\text{GL}(\tilde{d})$-equivariant open immersion onto the set
$$\text{rep}(\tilde{Q}, \tilde{d})' = \{ Y \in \text{rep}(\tilde{Q}, \tilde{d}); \det(Y(\beta)) \neq 0 \},$$
where $\text{GL}(\tilde{d})$ acts on $\text{GL}(p) \times \text{rep}(Q, d)$ by
$$h \ast (s, X) = (h_0sh_1^{-1}, h \ast X)$$
and $\tilde{h}_i = h_i$ for $i \in Q_0$.

Note that by definition,
$$\Phi^*(\tilde{c}_i)(s, X) = \begin{cases}
\det(s) \cdot c_i(X) & i = 1, \ldots, p, \\
\det(s) & i = 0;
\end{cases}$$
$$\Phi^*(\tilde{f}_A)(s, X) = \begin{cases}
\det(s) \cdot f_A(X) & \text{if } \alpha_n \text{ belongs to } A, \\
f_A(X) & \text{otherwise.}
\end{cases}$$

We conclude that the zero set $\mathcal{V}(c_1, \ldots, c_p, \{f_A\}) = Z_{Q, d} \subseteq \text{rep}(Q, d)$ has the same codimension as the zero set $\mathcal{V}(\tilde{c}_1, \ldots, \tilde{c}_p, \{\tilde{f}_A\}) = \mathcal{V}_{\tilde{Q}, \tilde{d}} \subseteq \text{rep}(\tilde{Q}, \tilde{d})$. As $Z_{\tilde{Q}, \tilde{d}} = \mathcal{V}(\tilde{c}_0) \cap \mathcal{V}_{\tilde{Q}, \tilde{d}}$ is a complete intersection by Theorem [1], $\mathcal{V}_{\tilde{Q}, \tilde{d}}$ is as well. This proves part (i).

As for part (ii), we need to study the set $\mathcal{V}(c_1, \ldots, c_p)$ of common zeros of $c_1, \ldots, c_{p-1}, c_p = \prod f_B$, where B ranges over all minimal admissible arcs. As
$$\mathcal{V}(c_1, \ldots, c_p) = \bigcup_B \mathcal{V}(c_1, \ldots, c_{p-1}, f_B),$$
this is a complete intersection as well. Clearly, a representation X is nilpotent if and only if the characteristic polynomial of $X(\alpha_n) \cdot \ldots \cdot X(\alpha_1)$ is T^p.

References

Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

E-mail address: christine.riedtmann@math-stat.unibe.ch

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

E-mail address: gzvara@mat.uni.torun.pl